Studija utjecaja na okoliš uzgajališta kalifornijske pastrve na četiri lokacije V1 (Uvale Trsina i Tvrduša), V2 (Uvale Bilančevica i Bočarije Vele), V3 (Uvale Velika i Mala Črnika) i V4 (Uvale Marasovka i Pećci) u Velebitskom kanalu.

Zagreb, svibanj 2023.
<table>
<thead>
<tr>
<th>Institucija</th>
<th>Poglavlja</th>
<th>Potpis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Ruđer Bošković</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tomislav Bulat, bacc, oecc.</td>
<td>3.4</td>
<td>Bulat</td>
</tr>
<tr>
<td>dr.sc. Elvira Bura Nakić</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>dr.sc Neven Cukrov</td>
<td>1.1, 1.2, 2, 3.2, 3.3, 3.4, 5, 6, 7,</td>
<td></td>
</tr>
<tr>
<td>dr.sc Sunčana Geček</td>
<td>3.8</td>
<td>Geček</td>
</tr>
<tr>
<td>prof.dr.sc Tarzan Legović</td>
<td>4.2, 4.3, 4.4, 5</td>
<td>Legović</td>
</tr>
<tr>
<td>Marin Lovrić, mag.ing. m. ribarstva</td>
<td>4, 5, 6, 7</td>
<td>Lovrić</td>
</tr>
<tr>
<td>dr.sc Dario Omanović</td>
<td>3.4</td>
<td>Omanović</td>
</tr>
<tr>
<td>dr.sc Damir Valić</td>
<td>1.3, 1.4, 1.5, 4.1, 4.2, 4.4, 5, 6, 7</td>
<td>Valić</td>
</tr>
<tr>
<td>Vanjski suradnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dr.sc Petar Kružić</td>
<td>3.5</td>
<td>Kružić</td>
</tr>
<tr>
<td>Damir Kasum, dipl.inž.fiz.</td>
<td>4.2.3</td>
<td></td>
</tr>
<tr>
<td>GEODESIGN j.d.o.o.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ana Kruljac, mag.ing.agr.</td>
<td>3.1, 3.3.1, 3.6, 3.7, 3.9, 4.1, 4.2, 4.4, 5, 7</td>
<td>Kruljac</td>
</tr>
<tr>
<td>Ivan Tolić, mag, ing, prosp.arch.</td>
<td>3.1, 3.3.1, 3.6, 3.7, 4.1, 4.2, 4.4, 5, 7</td>
<td>Tolić</td>
</tr>
</tbody>
</table>

Voditelj izrade SUO

Dr.sc. Neven Cukrov
Sadržaj

1. OPIS ZAHVATA .. 1
 1.1 PODATCI O NOSITELJU ZAHVATA 1
 1.2 SVRHA PODUZIMANJA ZAHVATA 1
 1.3 TEMELJNI TEHNOLOSKI PARAMETRI UZGOJA 8
 1.3.1 Opis tehnološkog procesa 9
 1.3.2 Komponente postrojenja i kapacitete 12
 1.3.3 Postavljanje komponenti i način sidrenja 16
 1.3.4 Bilanca materijala i energije 17
 1.3.5 Emisija tvari u okoliš 17
 1.3.6 Problemi u tumačenju emisije iz kaveznog uzgajališta riba 20
 1.3.7 Problem emisije otopljenih tvari 21
 1.3.8 Postupanje s otpadom 21
 1.4 TEMELJNI TEHNOLOSKI PARAMETRI ZA PROCJENU EMISIJE
 U OKOLIŠ ... 24
 1.5 BOLESTI U UZGOJU KALIFORNIJSKE PASTRVE 24
 1.5.1 Pregled najčešćih ili najopasnijih oboljenja 25
 2. VARIJANTNA RJEŠENJA ZAHVATA 29
 2.1 PRIJEDLOG NAJPRIKLADNIJE VARIJANTE ZAHVATA 29
 3. PODATCI O OKOLIŠU I OPIS LOKACIJA ZAHVATA 30
 3.1 PROSTORNO-PLANSKA DOKUMENTACIJA 30
 3.2 GEOLOŠKE I HIDROGEološKE ZNAČAJKE PROSTORA 51
 3.2.1 Geološke značajke 51
 3.2.2 Inženjersko geološke značajke dna 55
 3.3 HIDROLOŠKE ZNAČAJKE ... 62
 3.3.1 Pregled stanja vodnih tijela 63
 3.3.2 Zone sanitarne zaštite izvorišta 65
 3.3.3 Osjetljiva područja na području zahvata 67
 3.3.4 Ranjiva područja na području zahvata 67
 3.3.5 Branjena područja na području zahvata 69
 3.4 STANJE MORSKOG OKOLIŠA ... 70
 3.4.1 Sediment ... 70
 3.4.1.1 Redoks potencijal u sedimentu 70
 3.4.1.2 Elementni sastav sedimenta 71
 3.4.1.3 Organski ugljik, ukupni dušik i ukupni fosfor 75
 3.4.2 Vodeni stupac ... 76
 3.4.2.1 Hranjive soli ... 76
 3.4.2.1 Toksični metali 79
 3.4.2.2 Fizičko-kemijski parametri 81
 3.5 BIOLOŠKA RAZNOLIKOST ... 84
 3.5.1 Životne zajednice bentosa istraživanih područja 84
 3.5.2 Staništa predmetnih područja 105
 3.5.3 Fitoplankton ... 108
 3.5.4 Zooplankton ... 110
 3.5.5 Životne zajednice nektona 111
 3.5.6 Životne zajednice nektona 112
 3.5.6.1 Zaštićena područja 112
 3.5.6.2 Ekološka mreža (Natura 2000) 113
3.6 VIZUALNA KVALITETA KRAJOBRAZA
 3.6.1 O karakteristikama šireg prostora
 3.6.2 Opis mikrolokacija
 3.6.3 Stanovništvo

3.7 POMORSKI PROMET U ZONI VELEBITSKOG KANALA
 I ODABRANIH MIKROLOKACIJA
 3.7.1. Opis akvatorija Velebitskog kanala
 3.7.2. Pomorski promet u Velebitskom kanalu

3.8 DINAMIKA RAZINE MORA, STRUJANJE MORA
 3.8.1 Mjerenje i analiza podataka razine mora i strujanja mora
 3.8.2 Oscilacije razine mora
 3.8.3 Strujanje mora
 3.8.3.1 Strujanje mora na lokaciji Velika i Mala Črnika
 3.8.3.2 Strujanje mora na lokaciji Marasovka i Pečći
 3.8.3.3 Strujanje mora na lokaciji Trsina i Tvrđuša
 3.8.3.4 Strujanje mora na lokaciji Bilančevica i Bočarije Vele
 3.8.5 Plimna komponenta strujanja mora

3.9 VALOVI

3.10 HIDRO-METEROLoŠKA OBILJEŽA I KLIMATsKE PROMJENE
 3.10.1 Meteorološka obilježja područja
 3.9.2 Klimatske promjene

4. OPIS UTJECAJA ZAHVATA NA OKOLIŠ
 4.1 UTJECAJI TIJEKOM POSTAVLJANJA KAVEZA
 4.2 UTJECAJI TIJEKOM RADA UZGAJALIŠTA
 4.2.1 Otpad
 4.2.2 Utjecaj na morski okoliš, biološku raznolikost i morska staništa
 4.2.3 Utjecaj na vodeni stopac i dno
 4.2.4 Utjecaj na fitoplankton
 4.2.5 Utjecaj na zooplankton
 4.2.6 Utjecaj na životne zajednice nektona
 4.2.7 Utjecaj na životne zajednice bentosa
 4.2.8 Utjecaj na strogo zaštićene vrste
 4.2.9 Utjecaj na pomorski promet
 4.2.10 Utjecaj na krajobraz
 4.2.11 Utjecaj na stanovništvo
 4.2.12 Utjecaj zahvata na klimatske promjene – emisije stakleničkih plinova
 4.2.13 Utjecaj klimatskih promjena na zahvat
 4.2.14 Utjecaj na dodatne prirodne resurse
 4.2.15 Opis utjecaja koji proizlaze iz podložnosti zahvata rizicima od velikih nesreća
 4.2.16 Utjecaj na štete i koristi za društvo
 4.2.17 Utjecaj buke
4.2.18 Utjecaj na vodocrpilišta

4.3 MEĐUSOBNI I KUMULATIVNI UTJECAJI

4.4 UTJECAJI NAKON PRESTANKA RADA UZGAJALIŠTA

4.5 UTJECAJ UZGAJALIŠTA U VARIJANTI A) S POSTAVLJENIM KAVEZIMA

PARALELNO UZ OBALU

5. PRIJEDLOG MJERA ZAŠTITE OKOLIŠA

5.1 MJERE TIJEKOM POSTAVLJANJA UZGOJNIH INSTALACIJA (KAVEZA)

5.2 MJERE TIJEKOM KORIŠTENJA

5.3 MJERE U SLUČAJU IZVANREDNIH SITUACIJA

5.4 MJERE NAKON PRESTANKA RADA UZGAJALIŠTA

6. PROGRAM PRAĆENJA STANJA OKOLIŠA

6.1 PRAĆENJE UTJECAJA ZAHVATA

6.2 PLANIRANA SURADNJA NOSITELJA ZAHVATA S JAVNOŠĆU

6.3 PROCJENA TROŠKOVA MJERA ZAŠTITE I MONITORINGA

7. NAZNAKE MOGUĆIH POTEŠKOĆA

8. IZVORI PODATAKA

SAŽETAK

PRILOZI
1. OPIS ZAHVATA

1.1 PODATCI O NOSITELJU ZAHVATA

ADRIATIC FARMING d.o.o. (OIB 13181248642) za ribarstvo, trgovinu i usluge sa sjedištem u Zadru, Nikole Tesle 46 registriran je kao društvo s ograničenom odgovornošću za ribarstvo i trgovačku djelatnost, uzgoj riba i usluge koje su povezane s tim. Radi se o tvrtki u vlasništvu ino-partnera NORDIC FISH FARMING AS, Norveška, 43741 EGERSUND koji godišnje u svijetu proizведe 15 000 t ribe i preradi više od 25 000 t, i Bernarda Lacića iz Zadra. Društvo se bavi uzgojem kalifornijske pastrve na koncesijski dodijeljenim lokacijama LUKOVO ŠUGARJE i JABLANAC u Velebitskom kanalu za vrijeme trajanja koncesije uzgajališta.

Realizacijom ovog investicijskog projekta investitor bi imao moderno opremljeno uzgajalište za kalifornijske pastrve s pripadajućom infrastrukturu. Osnovne djelatnosti investitora su ribarstvo i akvakultura.

Poduzeće zastupa i predstavlja direktor Miodrag Lacić (+385955360468 / miodrag.adriatic.farming@gmail.com) iz Zadra.

Investitor za svoje obveze odgovara sa svim sredstvima kojima raspolaže i kojima se koristi.

1.2 SVRHA PODUZIMANJA ZAHVATA

Lokacijski uvjeti definirani su u prostornom planu Ličko-senjske županije, te bi se zahvati u prostoru obavili u skladu s istim.

Sva predložena uzgajališta kao i postojeća nalaze se u Velebitskom kanalu (Slika 1_1). Velebitski kanal je morski prolaz između podvelebitske obale i otočnoga niza Krk–Prvić–Goli–Rab–Pag–sjeveroistočna obala Ravnih kotara. Dug je 121 km, s prosječnom širinom 3 do 4 km, a najveća dubina ide do 106 m. Na sjeverozapadu se Velebitski kanal spaja s Vinodolskim kanalom, a na jugoistoku završava uskim zatvorenim dijelom između Selina i Vinjerca. Tjesnac Masleničko ždrilo spaja Velebitski kanal s Novigradskim morem.

Studija utjecaja na okoliš

Slika 1_1 Satelitska fotografija Velebitskog kanala s označenim lokacijama uzgajališta

Temelj i svrha uspostave uzgajališta na lokalitetu V1 s dubinom od 66 do 84 m na predviđenim lokacijama caveza koje se nalazi na koordinatama X 372128,483246 Y 4958638,08231 ispred uvala Trsina i Tvrduša (slike 1_2 i 1_3) u Velebitskom kanalu je komercijalna proizvodnja visoko kvalitetne kalifornijske pastrve (**Oncorhynchus mykiss**)) u količini od 700 t godišnje. Trajanje jednog uzgojnog ciklusa iznosi 1,5 godina, a prosječna prodajna masa ribe iznosi 3,2 kg. Najveći dio ribe će se prodati u drugoj godini uzgojnog ciklusa, dok će manji dio ribe biti prodan prije toga vremena. Takav uzgojni ciklus ribe podrazumijeva preklapanje maksimalno dvije nasadne generacije i popunjenost uzgojnih kapaciteta tijekom većeg dijela godine. Kalifornijska pastrva kontroliranog porijekla veličine oko 100 g nasadićući će se u more i zbog toga se očekuje rast iznad 3 kg u godinu i pol (Farabi i sur., 2020). Mlađ će se nasadićati tijekom prosinca u ukupnoj količini od 245 000 komada. Primijeniti će se najsuvremenija tehnologija uzgoja u cavezima s potpuno automatiziranom hranidbom i kontrolom.
Podaci potrebni za izradu ove studije dobiveni su uzorkovanjem na terenu kao i iz dokumentacije investitora.
Studijom vrednovanja mora i podmorja Ličko-Senjske županije koja je korištena za izradu prostornog plana predložene su lokacije marikulture u području Velebitskog kanala pa su prema tom prijedlogu određene i lokacije u prostornim planovima gradova, općina i Ličko-Senjske županije.

Zona zahvata uzgajališta je veličine 150 x 300 metara i sastoji se od jednog polja navedenih dimenzija. Nisu predviđene građevine na obali ispred lokacija kaveza. Iste karakteristike navedene za lokalitet V1, odnose se i na lokalitet V2 - Bilančevica i Bočarije Vele.

Lokacija V2 (slike 1.4 i 1.5) s dubinama na lokaciji budućih kaveza od 65 do 77 m nalazi se malo manje od 4 km sjeverno od luke Prizna na koordinatama X377105,45811 Y4944466,95084. Na ovom području nema naselja ni vikendaških kuća. Sa sjeverne strane nalazi se uvala Bilančevica, a s južne uvala Bočarije vele.
Lokacija V3 s dubinama na lokacijama budućih kaveze od 70 do 78 m se nalazi 4,5 km jugoistočno od grada Karlobaga na koordinatama X 389645,802981 Y 4929146,2983 (slike 1_6 i 1_7). Zona zahvata ovog uzgajališta je veličine 270 x 600 m i sastoji se od dva polja dimenzija 110 x 600 m međusobno udaljenih 50 m. Iste karakteristike navedene za lokalitet V3, odnose se i na lokalitet V4 Marasovka i Pećci.

Na Lokacijama V3 i V4 komercijalna proizvodnja visoko kvalitetne kalifornijske pastrve (*Oncorhynchus mykiss*) iznosi 3 500 t godišnje. Trajanje jednog uzgojnog ciklusa iznosi 1,5 godinu, a prosječna prodajna masa ribe iznosi 3,2 kg. Najveći dio ribe će se prodati u drugoj godini uzgojnog ciklusa, dok će manji dio ribe biti prodan prije toga vremena. Takav uzgojni ciklus ribe podrazumijeva preklapanje maksimalno dvije nasadne generacije i popunjeno uzgojnih kapaciteta tijekom većeg dijela godine. Kalifornijska pastrva kontroliranog porijekla veličine oko 100 g nasadivati će se u more i zbog toga se očekuje rast iznad 3 kg u godinu i pol (Farabi i sur., 2020). Mlađe će se nasadivati tijekom prosinca u ukupnoj količini od 1 225 000 komada. Primijeniti će se najsuvremenija tehnologija uzgoja u kavezima s potpuno automatiziranom hranidbom i kontrolom.
Slika 1_6 Kavezi na lokaciji V3 (Velika i Mala Ćnika)

Slika 1_7 Fotografija lokacije budućeg uzgajališta V3
Studija utjecaja na okoliš

Lokacija V4 sa dubinama na lokaciji budućih kaveza od 65 do 77 m nalazi sjeverno od luke Porat u Lukovom Šugarju na koordinatama X393265,740238 Y 4924819,65947 (slike 1_8 i 1_9). Sa sjeverne strane lokaliteta nalazi se uvala Marasovka, a s južne uvala Pećci.

Slika 1_8 Kavezi na lokaciji V4 (Marasovka i Pećci)

Slika 1_9 Fotografija lokacije V4 budućeg uzgajališta
1.3 TEMELJNI TEHNOLOŠKI PARAMETRI UZGOJA

• Parametri za uzgoj od cca 700 t godišnje
 - nasad 245 000 kom
 - prosječna nasadna masa ribe 100 g
 - preživljavanje cca 90 %
 - prosječna masa konzumne ribe 3,2 kg
 - izlovljeno na kraju ciklusa 700 000 kg
 - prirast 675 500 kg
• Vremenski parametri uzgoja
 - početak ciklusa prosinac
 - izlovi tijekom cijele godine
 - trajanje uzgoja 10-18 mjeseci
• Utrošak hrane
 - utrošeno hrane 743 050 kg
 - I.K.(Indeks Konverzije) 1,10 (kg hrane/kg ribe)
• Uvjeti držanja -pretpostavka
 - koncesijsko područje 110 x 300 m
 - promjer kaveza 40 m
 - dubina mreža 45 m
 - broj kaveza 4 kom
 - 1 sidreno polje s 20 sidrina
 - uzgojni volumen po kavezu (50 m) cca 32 870 m³
 - ukupni uzgojni volumen cca 131 480 m³
 - količina po kavezu završno nakon selekcija cca 60 000 kom
 - maksimalna biomasa po kavezu cca 175 000 kg
 - završna moguća gustoća po uzgojnom volumenu do 5,4 kg m⁻³
• Sidrenje kaveza
 - smjer postavljanja sidrene mreže okomito na obalu
 - način postavljanja po dva u paru u sidrenu mrežu
 - dimenzije sidrene mreže 300 x 150 m
 - duljina sidrina iznosi x 2-3 dubine
 - 20 sidrina (duljina ovisno o dubini mora i izloženosti)

• Parametri za uzgoj od cca 3 500 t godišnje
 - nasad 1 225 000 kom
 - prosječna nasadna masa ribe 100 g
 - preživljavanje cca 90 %
 - prosječna masa konzumne ribe 3,2 kg
 - izlovljeno na kraju ciklusa 3 500 000 kg
 - prirast 3 377 500 kg
• Vremenski parametri uzgoja
 - početak ciklusa prosinac
 - izlovi tijekom cijele godine
 - trajanje uzgoja 10-18 mjeseci
• Utrošak hrane
 - utrošeno hrane 3 715 250 kg
 - I.K.(Indeks Konverzije) 1,10 (kg hrane/kg ribe)
• Uvjeti držanja -pretpostavka
Studija utjecaja na okoliš

- koncesijsko područje 270 x 600 m
- promjer kaveza 40 m
- dubina mreža 45 m
- broj kaveza 16 kom (2 x 8 kom)
- 2 sidrena polja po 30 sidrina
- uzgojni volumen po kavezu (50 m) cca 32 870 m³
- ukupni uzgojni volumen cca 525 900 m³
- količina po kavezu završno nakon selekcija cca 76 500 kom
- maksimalna biomasa po kavezu cca 240 000 kg
- završna moguća gustoća po uzgojnom volumenu do 7,3 kg m⁻³

- Sidrenje kaveza
 - smjer postavljanja sidrene mreže okomito na obalu
 - način postavljanja po dva u paru u sidrenu mrežu
 - dimenzije sidrene mreže 300 x 150 m
 - duljina sidrina iznosi x 2-3 dubine
 - 30 sidrina (duljina ovisno o dubini mora i izloženosti)

1.3.1 Opis tehnološkog procesa

Osnovni tehnološki proces možemo podijeliti na tri osnovna segmenta:

- Nasad mladi i presađivanje riba
- Hrana i hranidba
- Izlov konzumne ribe
Studija utjecaja na okoliš

- Nasad mlađi i presađivanje riba

Vrsta *Oncorhynchus mykiss* (kalifornijska pastrva) korištena je u nekim rijekama u Jadranском slivu poribljavanja, međutim radi se o jedinkama koje se ne mrijeste u prirodi. Takav slučaj odnosno ista vrsta ribe će se koristiti i kod ovog kaveznog uzgoja, s naznakom ipak da se ovdje radi o ograđenom objektu. Planiran je uzgoj samo diploidnih ženki, soja „steelhead“, porijeklom iz Danske, jer postoje određene poteškoće s uzgojem triploidnih kalifornijskih pastrva, kao i što se ne može garantirati da će sve jedinke biti sterilne. U Republici Hrvatskoj danas ne postoji niti jedan proizvođač kalifornijske pastrve koji bi mogao proizvesti dovoljnu količinu mlađi za potrebe ovog uzgajališta, pogotovo ne ovog posebnog soja koji može podnijeti prelazak iz slake u morsku vodu. Zbog navedenog uzgajivač je prisiljen uvesti nasadni materijal što podrazumijeva nabavu svih potrebnih dozvola od nadležnih ministarstava kao i neizostavnu karantenu. Nadležno tijelo za veterinu donijet će rješenje o uvozu i postupanju koje se mora poštivati. Budući da je investitor uzeo u koncesiju slatkovodno uzgajalište na rijeci Uni, ima i namjeru cijeli pripremni proces obaviti samostalno. Pri određenoj veličini i težini ribe obaviti će se smootifikacija također na navedenom slatkovodnom uzgajalištu upotrebom specijalne hrane i osvijetljenja. Prije nasadivanja ribe u more provest će se i cijepljenje ribe protiv vibrioze i furunkuloze. Cijepljenje se inače obavlja prije nego što Adriatic Farming primi ribu, ali cijepiti će se po potrebi i u slatkovodnom uzgajalištu Adriatic Farming Donja Suvaja. Cijepljenje je protiv nekoliko vrsta toplovodne vibrioze i furunkuloze. Adriatic Farming koristi injekcijsko cjeplivo koje je odobreno za kalifornijsku pastrvu u Hrvatskoj i razvijeno zajedno s MSD-om. Da bi prebacivanje ribe bilo što učinkovitije s manje mortaliteta potrebno je uskladiti temperaturu vode u slatkovodnom mrjestilištu s temperaturom mora na uzgajalištu. Prijevoz ribe potrebno je obaviti s kamionima opremljenim filterima i tankovima s kisikom. Kako bi mortalitet bio manji, osim uskladivanja temperature, potrebno je kondicionirati ribu na način da je se ne hrani neposredno pred transport kako bi u vodi s kojom se transportira bilo što manje tjelesnih izlučevina. Ovisno o transportnom kapacitetu kamiona (oko 20 000 komada mlađi) te ritmu (oko 2 kamiona dnevno), nasadivanje na lokacijama V1 i V2 trajati će do dva tjedna dok će na lokacijama V3 i V4 trajati oko mjesec dana. Navedeno je potrebno prijaviti nadležno veterinarskoj inspekciji radi pregleda ribe prilikom istovara. Kalifornijska pastrva (prosječne mase od 100) će se nasadivati u kaveze tijekom prosinca. Uzgojni ciklus podrazumijeva redovite selekcije, rasadaživanja i izlove što posljedično dovodi do razrjeđivanje ribe, s maksimum popunjenosti kaveza od travnja do lipnja. Sve planirane
akcije na kavezima su s ciljem kako uzgojna gustoća ne bi prelazila 12 kg m$^{-3}$. Pretpostavljena završna količina iznosi oko 76 500 komada konzumne pastrve po kavezu odnosno ukupno 245 000 na lokacijama V1 i V2, te 1 225 000 komada raspoređenih u 16 kaveza na lokacijama V3 i V4. Kako se planira ranije započeti selekciju i izlov ukupna količina bit će značajno manja. Također se treba računati i na mortalitet ribe.

• Hrana i hranidba

Riba se najčešće hrani ekstrudiranim peletom od pouzdanog proizvođača riblje hrane. U uzgoju kalifornijske pastrve utrošak hrane za 1 kg prirasta kreće se nešto iznad 1 kg. Kako riba raste tako se u hrani postupno smanjuje udio bjelančevina (od 49% prema 40%), dok se udio lipida povećava (od 27% prema 35%). Ribilja hrana se najčešće sastoji od ribljeg brašna, ribljeg ulja, FPC, dijelova soje i kukuruze, pšeničnog brašna, vitamina i minerala te pigmenta. Planirani utrošak hrane za uzgojni ciklus na lokacijama V1 i V2 iznosi oko 743 050 kg, dok na lokacijama V3 i V4 iznosi oko 3 715 250 kg hrane po uzgojnoj generaciji (za konverziju 1,1).

U proljeće se očekuje najveći utrošak hrane (svibanj i lipanj), kada će mjesečni unos iznositi 70 - 85 t za lokacije V1 i V2 i 350 - 420 t za lokacije V3 i V4. U tom periodu biti će i najveći napor što se tiče punjenja hranilica dok ostali mjeseci neće biti toliko kritični jer hranilice mogu sadržavati od 400 do 900 kg hrane. Autonomija hranjenja kaveza će biti osigurana na način da je uz svaki kavez postavljena jedinica za hranjenje, odnosno hranilica koja osigurava neprekidno hranjenje ribe. Platforma s hranilicom se sastoji od spremnika za hranu, "tunela" za uvođenje hrane u distribuciju, postrojenja za pumpanje hrane, cijevi za uvođenje hrane u kavez, kućišta sa senzorima za temperaturu i salinitet u kojem se programiraju režim rada i kontrola hranidbe. Postoji i usisna cijev koja je vezana na dno lijevka za prikupljanje nepojedene hrane. Rasipača hrane prikuplja nepojedenu hrano, a pričvršćena je za centralni prsten uz kavez i ima lijevak koji na dnu ima detektor za utvrđivanje prolaza nepojedene hrane. Platforma će se nalaziti uz kavez i na nju će pristajati brodica za prijevoz hrane. Pomoću dizalice će se podizati vreće s hranom te se sa sjekačima otvarati i hrana će upadati u spremnik hranilice. Prazne vreće će se sakupiti i s brodicom vratiti na kopno. Cijev za distribuciju hrane će biti pod nadzorom računala. Pumpa za morsku vodu uzima vodu iz dna lijevka u kavezu i tlač je preko sita u cijev za distribuciju putem koje je dovodi do rasipača iznad lijevka. Nepojedena hrana pada u lijevak i putem usisne cijevi dolazi na sito. Prolaz nepojedene hrane bilježi foto ćelija koja prekida rad hranilice, osim puhalice koja suši nepojedenu hrano. Prije ponovnog uključivanja, sito se otvara i osušena hrana se ponovo daje ribi.
Ovisno o ishrani ribe, hranjenje može biti kroz cijeli dan. Riba se hrani do sitosti, što znači oko četiri puta dnevno, osim ukoliko se sakupi veća količina hrane u posudi te putem detektora dolazi do automatskog prestanka hranidbe. Nakon 30 ili 60 minuta ponovo se pokušava hraniti i tako tijekom trajanja danjeg svijetla. Tijekom dana s olujnim vjetrom riba se neće hraniti.

- Izlov konzumne ribe

Od kraja svibnja provoditi će se izlovi i selekcija. Manja riba se vraća u kavez, a za prodaju se izdvaja veća. Tehnološki procesi pripreme kaveza za prihvat ribe usklađeni su s dinamikom izlova te se najveći izlovi predviđaju u lipnju i srpnju. Ovisno o potrebama tržišta i stanju na uzgajalištu planirani su izlovi do 20 t na dan. Kako bi se formirala stabilna proizvodnja, neće se prakticirati istovremen izlov obje generacije na uzgajalištu. Treba uspostaviti stabilnu dinamiku izlova koja ne narušava i ne dovodi do većih promjena u odnosima biomase i potrošnje hrane.

Izlov ribe obavit će se pomoću vakuum pumpi ili oprarom zajedno s dizalicom, a krajnja obrada će se obaviti na kopnu, u ugovorenim registriranim objektima koji su predmet posebne lokacijske dozvole. Riba se umiruje pothlađivanjem u vodi pomiješanoj s ledom u posebnim spremnicima. Brodovima se tako izlovljena riba prebacuje na pristanišno mjesto i hladnjačama prebacuje u objekte za preradu. Predviđa se izgradnja preradbenih kapaciteta na bliskim lokalitetima.

1.3.2 Komponente postrojenja i kapaciteti

U okviru uzgajališta podrazumijevamo slijedeće osnovne komponente postrojenja:

- platforme
- mrežni kavezi
- sidrena armatura
- hranilice
- brodovi
- prateća oprema
- prateći objekti na kopnu

- Platforme

Koristit će se okrugli kavezi najvećeg promjera oko 40 m (opsega 120 m). Kavezi će biti dubine 45 m. Izraditi će se od najlonske mreže bez čvorova i sa četiri reda horizontalne užadi odnosno 24 komada vertikalne užadi. Užad će biti od poliestera.
Na dubini od 1,2 m će se horizontalna užad pojačati (2 reda zajedno). Na horizontalnoj užadi će se postaviti čvorovi kroz koje će se provući plastične cijevi. Čvorovi će se postaviti u 3 reda (jedan uz gornju, drugi uz donju horizontalnu užad, a treći red uz pojačanu horizontalnu užad na dubini od 1,2 m.) Svaki kavez će se vezati na četiri plutače kojih će ukupno biti 14 za lokacije V1 i V2 te 26 (52 za oba polja) za lokacije V3 i V4. Kavez su elastični i specijalne izvedbe tako da lako podnose uvjeti teškog mora. Ukupno će se na lokacijama V1 i V2 koristiti 4 kaveza u liniji, dok će se na lokacijama V3 i V4 koristiti 8 kaveza u liniji (16 za oba polja). Kavez se smještaju i vežu na sidrenu mrežu. Zona zahvata uzgajališta je veličine 110 x 300 m na lokacijama V1 i V2 te 270 x 600 m na lokacijama V3 i V4 koje se sastoje od dva polja dimenzija 110 x 600 m međusobno udaljena 50 metara.

Mrežni kavezi

Mreža koja će se koristiti za kaveze imati će veličinu oka 30 mm. Biti će od najlona i bez čvorova. Dubina mreže će biti 45 m. Na samom dnu svake mreže, odnosno pri dnu konusa, dolazi posebno konstruirana naprava za sakupljanje uginulih riba koja se jednostavnim principom dovlači na površinu i prazni. Nakon pražnjenja opet se spušta na mjesto na dnu kavez gdje se sakuplja eventualno uginula riba.

Sidrena armatura

Četiri kaveza na lokacijama V1 i V2 i osam kaveza na lokacijama V3 i V4 će biti međusobno vezana i činiti jedno polje. Svaki kavez je s četiri strane s po 3 privezna konopa (ukupno 12) povezan na četiri simetrično postavljene plutače, dakle cijelo polje ima 14 plutača na lokacijama V1 i V2 i 26 plutača na lokacijama V3 i V4. Okvir (polje) se sidri preko plutača sa sidrenom užadi i lancima. Uzduž polja na svaku plutaču je prikvačeno po jedno uže-lanac (5 sa svake strane), a na vrhu okvira (polja) na svaku plutaču se hvataju 2 užeta-lanca (slika 1_10).
Slika 1_10. Tlocrt kaveza, način sidrenja za lokacije V1 i V2, te lokacije V3 i V4 (jedno polje)
Studija utjecaja na okoliš

Na lanac se postavlja plužno sidro (Slika 2_10).

Slika 1_11 Sidreni sustav

- **Hranilice**
 Unutar koncesijskog polja, predviđeno je sidrenje hranilice za automatsko hranjenje ribe dimenzija 10,9 m x 10,9 m, visine 7,5 m. s kapacitetom glavnog silosa od 115 m3. Na hranilici će biti 1 tank diesl goriva od 3000L za pogon agregata. Hranilica nema vlastiti pogon.

- **Brodovi**
 Opsluživanje uzgajališta vršit će se preko brodice veličine oko 10 m koja bi imala funkciju dnevnog punjenja silosnih jedinica uz kaveze, kao i funkciju kontrole. Pored brodice za manipulaciju, podrazumijeva se i korištenje većeg broda koji bi opsluživao više farmi u budućnosti vezano uz izlove. Isto tako veći brod u osnovnoj namjeni ima i funkciju promjene mreža, povlačenja kaveza i dr. Manje plastične brodice s izvanbrodskim motorima služit će za kontroliranje hranjenja, pregled, čuvanje objekta kao i za prebacivanje ljudi.

- **Prateća oprema**
 U prateću opremu od većeg značaja možemo ubrojiti stroj za pranje mreža, viljuškar, silamort, (za neškodljivo uklanjanje uginulih riba), laboratorijsku opremu, agregate, ledomate,
hladnjače za prijevoz ribe, kao i opremu za redovno održavanje. Pranje mreža obavljat će se u „net-washer“ uređaju koji će koristiti morsku vodu.

- Prateći objekti
U funkciji logističke baze će se za sve lokalitete koristit Lukovo Šugarje i uvala Stinice gdje postoji koncesija te uredi, prostorije za kraći boravak ljudi i prostorije za veterinare u Lukovom Šugarju. Za preradu se planiraju pogoni u Benkovcu ili Senju koji će se odrediti prije početka proizvodnje. Što se tiče uvale Porat, tamo već postoji operativna obala koja je dovoljno velika za smještaj potrebne prateće opreme i prostorija. Prije početka proizvodnje definirat će se i smještaj preradbenih kapaciteta.

Slika 1.12 Prikaz lokacija A) u uvali Porat i B) u luci Stinica za čije korištenje je ishodena koncesija Lučke uprave Senj

1.3.3 Postavljanje komponenti i način sidrenja
Površina koncesije iznosi 270 x 600 m. Sidrenje 4 kaveza na lokacijama V1 i V2, te 16 kaveza (2 x 8 komada u liniji) na lokacijama V3 i V4 podrazumijeva sidrenje u okvirima sidrene mreže koja predstavlja osnovu za sidrenje. Veličina polja na lokacijama V1 i V2 iznosi 110 x 300 m, dok na lokacijama V3 i V4 veličina svakog polja iznosi 110 x 600 m postavljenih u dvije linije. Između dvije linije nalaze se manja sidrena polja s funkcijom rotacije kaveza. Sidrenje se sastoji od tri faze:
- izrada sidrene mreže,
Studija utjecaja na okoliš

− izrada sidrenih linija,
− povezivanje.

Nakon što se pravilno postavi kompletno sidrište, u sidrenu mrežu se postavljaju kavezi koji se vežu s više konopa u četverokut. U smjeru u kojem se očekuje najveća izloženost kaveza valovima i opterećenjima stave se pojačanja. U slučaju incidentnih situacija važno je napomenuti da sidrena mreža ostavlja rezervu slobodnih mjesta za rotaciju.

1.3.4 Bilanca materijala i energije

Osnovni tehnološki parametri izrade bilance materijala i energije

S obzirom na količinu proizvedene ribe kao i mjesečni unos hrane može se napraviti bilanca materijala i energije. Izračun se temelji na već poznatim i iskustvenim podacima rasta ribe te upotrijebljenoj energetskoj vrijednosti hrane, u koji je uključen i gubitak hrane (oko 1%). Uz uporabu moderne tehnologije gubitak hrane će se svesti na minimum, što zbog manjih propusta, što zbog tehničkih obilježja same hrane. Zbog popusta u izradi može se dogoditi da hrana pluta i ne dode do ribe već odnesena strujom ili vjetrom završi izvan kaveza. Iako se ovo vrlo rijetko događa, potrebno je uzeti to u obzir pri izradi ocjene rizika zahvata. Izlove ribe važno je ukalkulirati najviše zbog smanjenja biomase ribe u kavezu i oni će biti podijeljeni u tri pojedinačna mjesečna ciklusa.

• Unos hrane i izlovi

Prilikom ciklusa u uzgoju dolazi do preklapanja dviju generacija kroz period od 6 do 8 mjeseci. Maksimum unosa hrane pri punoj proizvodnji je u drugoj godini nasada, između 42 i 52 tjedna (10-12 mjeseci) i 18 i 24 tjedna (5-6 mjeseci), dok se maksimum biomase u moru očekuje od 8 do 22 tjedna (2-5 mjeseca).

Potrebno je u što manje puta izloviti cijeli kavez da se na taj način izbjegne nepotreban stres kod ribe i obavezno selektirati ribu prilikom izlova kako bi prvo veća riba išla u prodaju. Ukupno unos hrane bazira se na količini od 743,05 t za lokacije V1 i V2, te 3 715,25 t za lokacije V3 i V4, dok će izlov iznositi oko 3 500 t. Kako bi se dobile identične godišnje vrijednosti, usklađit će se nasadi i izlovi ribe kroz vremensko razdoblje jedne generacije.

• Procjena količine uginule ribe

Maksimum uginuća očekuje se tijekom prvih 10 tjedana uzgoja, nakon prebacivanja iz slatke u morsku vodu kao posljedica prilagodbe riba na promijenjene uvjete staništa (salinitet). Očekivana srednja masa uginule ribe za taj period iznosi oko 150 g. Predviđa se ukupna biomasa mortaliteta oko 8 t, prosječno do 100 kg dnevno, za taj period.
1.3.5 Emisija tvari u okoliš

Kavezni uzgoj ribe također emitira tvari u okoliš i njih možemo prema obliku podijeliti na otopljene i neotopljene (čestice). Otopljene tvari se u okolnoj morskoj vodi razrjeđuju dok se čestice neotopljenih tvari jednim dijelom talože na morskom dnu, dijelom se razgrade, a dijelom ih konzumiraju organizmi dok tonu u vodenom stupcu što znači da ulaze u hranidbeni ciklus. Naravno da ih mogu i konzumirati organizmi na dnu, nakon što dođu do sedimenta.

Ugradnja izlučenih metabolita i nepojedene hrane, osim o fizičkim, kemijskim i biološkim karakteristikama šireg područja zahvata, ovisi i o biološkoj dostupnosti pojedine emitirane tvari.

Gledajući biološku aktivnost, emitirane tvari možemo podijeliti u tri skupine:

a) prirodni produkti metabolizma
b) nepojedena hrana
c) tvari unesene veterinarnskim i zootehničkim mjerama

Kako se sve više pažnje posvećuje unosu farmaceutskih i drugih preparata u okoliš, tako i u marikulturi se sve više radi na prevenciji kroz veterinarske mjere te na upotrebi biorazgradivih tvari tj. onih koje minimalno emitiraju u okoliš.

Pri uzgoju ribe, najveća emisija u okoliš dolazi od procesa hranjena tj. hrane i metaboličkih produkata razgradnje. Riba se hrani nekoliko puta dnevno, ovisno o uzrastu što je zadano s prema veličini ribe i prema preporukama proizvođača hrane. Emitirane tvari, tj. produkti metabolizma ovise o ritmu hranjenja. Ono što je različito u trofičkom vrednovanju uzgojnih od prirodnih populacija jest: gustoća uzgojne populacije riba, fiksni položaj uzgojne populacije i unos velike količine tvari i energije (nije nastala u trofički povezanim području s područjem zahvata).

Emisija tvari kao posljedica hranjenja, najčešći je i najvažniji predmet rasprave prema mogućem utjecaju na okoliš. Od emitiranih tvari u uzgoju, nepojedena hrana ima najveći utjecaj, te utazi u okoliš u obliku krutih čestica. Najveći dio je pojeden dok ostatak pada na dno gdje je razgrađuju organizmi u i na sedimentu, a ostatak pojedu okolne ribe. Što se tiče fecesa nastalog od riba, on se također izlučuje u obliku krutih čestica. On sporo tone i 10-50 % stigne na dno. Ima sličnu sudbinu kao i nepojedena hrana. Oslobođeni CO₂ nema veći utjecaj za okoliš obzirom da nisu zabilježene promjene u pH vrijednosti na uzgajalištima. Dušik se izlučuje u otopljenom i krutom obliku, ali većim dijelom otopljen (oko 80 %). Sudbina fosfora je slična onoj od dušika s tim da se većinom ipak emitira u čvrstoj formi (oko 65 %).
Prilikom prikaza emitirane organske tvari, u obliku fecesa i hrane, ona se najčešće opisuje kao emisija neotopljenog organskog ugljika ili kao potrebna količina kisika za potpunu oksidaciju te iste tvari. Obzirom na već davni uzgoj salmonidnih vrsta, postoje brojni literaturni podaci, koji dosta variraju. Međutim uzgojna tehnologija je jako uznapredovala i noviji podaci govore o gubitcima od oko samo 1 % u hranidbi riba. Kad se govori o procjeni količine nastalog fecesa, nekakav okvirni omjer je 2,5 kg mokre mase na 1 kg prirasta ribe. Što se tiče ugljika, negdje 70 do 80 % ga se oslobodi u okoliš izvornog u hrani. Kod dušika je omjer manji te ga se otpusti negdje 3,5 do 5,5 % pri prirostu ribe od čega je oko 3/4 u otopljenom obliku, najviše kao amonijak. Kod fosfora je taj omjer još manji i iznosi 0,48 do 0,8 % pri prirostu i najveći dio se izlučuje u neotopljenom čvrstom obliku (65 %), ili ako govorimo o emisiji u okoliš onda oko 3/4.

Potrošnja kisika se najčešće prikazuje kao BPK5 ili kao BPK7 (biološka potrošnja kisika unutar pet/sedam dana). Može dosta varirati s obzirom da ovisi o čimbenicima u okolišu, sirovinskom sastavu hrane, tehnologiji hranjenja i sl. Procjena BPK5 za uzgoj jedne tone pastrve se kreće oko 300 kg O$_2$ na godišnjoj razini.

Napredak u postupku proizvodnje hrane za uzgoj ribe doveo je do visoko energetske hrane s minimalnom konverzijom proteina u masti. Uz to je proizvodnja hrane dodatno napredovala prema ekološko prihvatljivoj te uz učinkovitu tehnologiju hranjenja svodi gubitak hrane ispod nevjerovatnih 1 %. Cjeloviti izračun emisije trebalo bi napraviti na temelju slijedećih parametara:

- Kemijski sastav ribe (18 % proteini, 8 % masti i 0,4 % fosfor)
- Kemijski sastav hrane (40-45 % proteina, 30-35 % masti, 10-12 % ugljikohidrata, 0,7-1 % vlakana i 0,9 % fosfora)
- Energetska vrijednost pojedinih komponenti hrane (23,66KJ-proteini, 39,57KJ-masti i 17,77KJ-ugljikohidrati)
- Probavljivost pojedinih komponenti hrane (90 % proteini, 90 % masti i 85 % ugljikohidrati)
- Oksokalorična vrijednost (13,77KJ/g O$_2$)
- Respiracijski kvocijent RQ (0,8 proteini, 0,7-masti i 1-ugljikohidrati)

Potrebna količina kisika je teoretski izračunata iz parametara energetskih vrijednosti proteina, masti i ugljikohidrata te literaturnih navoda. Kao što je navedeno ranije, upotrijebit će se tehnologija uzgoja koja sadrži lijevak za hvatanje i recirkulaciju nepojedenih peleta hrane. To će inducirati vrlo malu emisiju nepojedene hrane (peleta) u vodeni stupac. Naime, čim hranilica detektira recirkulaciju, hranjenje prestaje.
Procjenjuje se da će nepojedene hrane koja se zbog morskih struja neće moći uhvatiti u lijevak biti najviše 1 %. To znači da se u trenutku najintenzivnijeg hranjenja očekuje maksimalna emisija oko 175 kg/dan (2 g/s) na cijeloj ribogojilištu, odnosno svim kavezima zajedno. Srednja vrijednost emisije nepojedene hrane po intervalu uzgoja je oko 85,4 kg/dan (1 g/s). Imajući na umu da je specifična težina peleta značajno veća od morske vode, nepojedena hrana padat će na dno hranilice odakle će se redovito sakupljati i recirkulirati. Za sve čestice koje se ne uspiju uhvatiti i reciklirati, uz pretpostavku srednje horizontalne brzine struje u vodenom stupcu od oko 5 cm/s i brzine tonjenja peleta od 5 do 15 cm/s i dubine od dna kaveza do morskog dna od 10 do 20 m (peletima treba od 1 do 7 minuta da dostignu dno), srednja udaljenost od centra ribogojilišta na dnu biti će od 3 do 20 m. Najveće raspršenje peleta u smjeru struje biti će u trenutku najveće struje i ono će iznositi od 12 do 80 m. Slobodne ribe privučene dotokom hrane, tu će količinu lako pojesti većim dijelom prije nego što padne na dno ili neposredno nakon toga.

1.3.6 Problemi u tumačenju emisije iz kaveznog uzgajališta riba
Suspendirane čestice
Prije je nepojedena hrana predstavljala najznačajniji izvor emitiranih čestica u okoliš. S obzirom na kemijski sastav hrane, njenu energetsku vrijednost i brzinu tonjenja, imala je značajan utjecaj na bentos te samim time i veliko značenje u procjeni utjecaja na okoliš tako da su ostali oblici emitiranih čestica bili od manjeg značaja. Međutim, danas je važnost emisije nepojedene hrane vrlo malen kod uzgoja salmonida obzirom na sva tehnološka rješenja u procesu hranidbe. Na taj način omogućeno je povećanje intenziteta uzgojnog procesa kroz povećanje broja uzgajanih riba ili povećanje prirasta. Zbog navedenog, kod izračuna emisije na budućim uzgajalištima koja su predmet ove studije, pažnju treba posvetiti emisiji fekalnih čestica koje danas predstavljaju najznačajniji udio u ukupnoj emisiji čestica. U literaturi se navodi da ovisno o odabiru lokacije 5 % do 60 % čestica istaloži se na dno, s tim da se dio može odnositi i na gubitke hrane iz uzgoja. Važno je napomenuti i da se oko pola fekalnih čestica suspendira u vodenom stupcu što za posljedicu dovodi do povećanog turbiditeta. Tu se krije i različita procjena omjera emisije otopljenog i neotopljenog fosfora. Širenje suspendiranih fekalnih čestica se temelji na istim principima kao i za otopljene tvari, uz procese oksidativne razgradnje i ugradnje za razliku kod otopljenog dušika gdje postoji put prema ugradnji u procese primarne produkcije.
Studija utjecaja na okoliš

Emisija fosfora i dušika

Premda se fosfor, kako je već spomenuto, najvećim dijelom emitira u krutoj formi (80 %), oko 2/3 fekalnog fosfora stoji na raspolaganju fitoplanktonu kao i autotrofnim bakterijama. S obzirom na to da se takav fosfor nalazi u suspendiranom dijelu fecesa, tretiramo ga također kao emisiju u otopljenoj formi. Emisija dušika kod riba u uzgoju je jasna i prema literaturi prikazan omjer emisije dušika i fosfora iznosi 7 naprema 1. Procjena utjecaja na primarnu produkciju moguća je na temelju emitiranog otopljenog dušika i spomenutog omjera i direktno se uključuje u prehrambeni lanac.

Remineralizacija iz sedimenta

Remineralizacija može imati eventualni utjecaj samo na primarnu produkciju Velebitskog kanala jer se odvija u oligofotičkoj zoni. Brzina razgradnje je proporcionalna količini ukupno nakupljenog organskog sedimenta, a ona je posljedica odnosa brzine njegove razgradnje i brzine nakupljanja. Literaturni podaci iz nešto hladnijeg mora pokazali su asimilaciju 1 do 4 grama organskog ugljika po kvadratnom metru na dan, bez značajnijeg nakupljanja organskog ugljika na dnu.

1.3.7 **Problem emisije otopljenih tvari**

CO₂ ima najveći udio u emisiji otopljenih tvari. Međutim kako je već napomenuto oko uzgajališta i u samim kavezima nije zabilježen znatniji pad pH vrijednosti niti kod uzgajanih riba hiperkapnija. Emisija otopljenog dušika je najčešće proučavana i najznačajnija pogotovo ona u obliku amonijaka. Koncentracije amonijaka oko uzgajališta riba su najčešće niske kao i masa fitoplanktona, što je najčešće povezano. Neujednačena emisija otopljenog dušika predstavlja problem prilikom predviđanja utjecaja na okoliš. Najveće količine dušika izlučuju se jedan do dva sata nakon hranjenja, 75 % do 85 % otopljenog u obliku amonijaka, a ostalo se najviše izlučuje kontinuirano kao urea. Ekskrecija dušika kod uzgajanih riba najčešći je uzrok precijenjenih predviđanja utjecaja na primarnu produkciju, usredotočenih uglavnom na srednjim vrijednostima emisije i strujanja morske vode.

Brzina tonjenja čestica

Prosječna brzina tonjenja ekstrudiranog peleta je 12 cm/s (5,5 cm/s do 15,5 cm/s; ovisno o veličini peleta). Brzina tonjenja fekalnih čestica je od 2 cm/s do 7 cm/s. Obje brzine tonjenja su iz literaturnih podataka i mjerene su u laboratorijskim uvjetima (Jusup i dr., 2009).
1.3.8 Postupanje s otpadom

Otpad koji se veže uz kavezni uzgoj ribe u moru može se podijeliti u nekoliko kategorija. Jedni od najvažnijih su sljedeći:

• ambalažni i komunalni otpad
• uginula riba
• obraštaj uzgojnih instalacija
• ostali važniji otpadi.

Sve kategorije predstavljaju značajniji otpad u kaveznom uzgoju ribe te ih je neophodno pravilno zbrinjivati.

Ambalažni i komunalni otpad

Prilikom redovnog ciklusa proizvodnje dolazi do većeg nakupljanja ambalažnog otpada (vreće i najloni za hranu, palete i sl.), otpada s kaveza (komadići mreža i konopa) i drugog otpada nastalog kroz boravak i djelatnost ljudi za poslu na uzgajalištu. Najznačajnija količina nastaje od ambalažnog otpada, točnije od vreća za hranu. Na godišnjoj razini radi se o opterećenju s vrećama od 25 kg s pripadajućim omotima u ukupnoj količini od 45 000 kg ambalažnog otpada. Zbog velike količine ambalažnog otpada, sklopit će se ugovor o sakupljanju ambalažnog otpada s ovlaštenim sakupljačem ambalažnog otpada kako bi se s istim pravilno postupilo. Kako će tijekom rada uzgajališta nastajati velike količine ambalažnog otpada pokušat će se više koristiti vreće od 500 kg hrane kako bi s ista smanjila. Osim vreća od ambalažnog otpada planirano je i oko 30 000 do 40 000 kg skladišnih drvenih paleta za dopremu hrane. Planira se prodavati ih pravnim ili fizičkim subjektima koji su zainteresirani za kupnju ili kao ogrjevni materijal. Ukoliko se drvene palete neće moći prodati na opisani način, one će se privremeno skladištiti na to za to predviđenom mjestu i predavati ovlaštenim sakupljačima. Sav otpada sa svih uzgajališta će se dozvati brodom u Lukovo Šugarje i tamo predavati ovlaštenom sakupljaču ambalažnog otpada.

Uginula riba

Očekivani mortalitet je oko 10 % (Farabi i sur., 2020) od ukupnog broja ribe i to najviše u početnoj fazi uzgoja. Najveće uginuće očekuje se nakon nasada uslijed loše adaptacije odnosno uslijed izostanka smolifikacije, te drugi put tijekom ljeta, što je uz dublje kaveze, novu tehnologiju i smanjeni mortalitet danas manji problem. S uginulom ribom postupat će se na zakonit i najbolji mogući način u trenutku nastanka otpada sukladno pravilnicima (Zakon
o veterinarstvu, NN 52/21 i Zakon o gospodarenju otpadom, NN 84/21). To znači da su uzgajališta opremljena mrežom za prihvat uginule ribe koja se nalazi na dnu kaveza. Mreža se kontrolira svaki dan i uginula riba se vadi na površinu u zasebne spremnike i odvozi na kopno gdje se privremeno skladišti u hladnjači. Po dogovoru predat će se ovlaštenom sakupljaču (kafilerija) i/ili prodati drugim pravnim osobama čija je djelatnost proizvodnja hrane za životinje. Uginula riba sa svih uzgajališta će se prevoziti u Lukovo Šugarje ili kasnije u uvalu Stinica gdje će se privremeno skladišiti do predaje ovlaštenoj osobi za preuzimanje otpada.

Obraštaj na uzgojnim instalacijama

U 90 % slučajeva, u obraštaju koji se nalazi na uzgojnim instalacijama, prevladava po masi školjkaš dagnja (*Mytilus galloprovincialis*) što predstavlja problem posebne vrste i prisutan je u većoj ili manjoj mjeri na svim uzgajalištima ribe. Problem je u tome što dagnja u velikim količinama obrasta uzgojne instalacije te ih znatno opterećuje svojom težinom. Usljed toga moguća su pucanja kaveznih komponenti uslijed naprezanja kao i nepravilan rad sidrenog sustava. Zbog toga će se redovito čistiti konopi i kaveze kako bi se dagnje uklonile u ličinačkoj fazi tj. pri prihvatu ili nakon prihvata dok je biomasa još mala. Otpad od obraštaja neće imati značajan negativan utjecaj na okoliš. Sakupljeni otpad od školjkaša će se predati ovlaštenoj osobi. Preporuča se i sklapanje komercijalnog ugovora s uzgajivačima školjkaša.

Ostali važniji otpadi

Motorna ulja iz motora brodica prilikom izmijene sakupljat će se u spremnike, primjereno se označiti i smjestiti na ograđena mjesta. U slučaju veće sakupljene količine, ovlaštenom sakupljaču će se predati ulje.
1.4 TEMELJNI TEHNOLOŠKI PARAMETRI ZA PROCJENU EMISIJE U OKOLIŠ
Od važnijih tehnoloških parametara bitno je posebno istaknuti prirast, potrošnju hrane i očekivana uginuća riba.

Prirast i potrošnja hrane:
Ovisno o veličini ribe i temperaturi mora predviđen je dnevni prirast od 1,1-1,6 %. Očekivano, najveći relativni prirasti su tijekom prvih mjeseci nakon nasada. Računajući prvu godinu nakon nasada, najveća dosegнутa biomasa očekuje se u svibnju i lipnju kada se očekuje od 1750 do 1925 t nastale biomase. Tad započinju i prvi izlovi kako bi se kroz naredne mjesecе izlovila preostala količina ribe. Cilj je pravovremenim započinjanjem izlova, zajedno sa selekcijom veće ribe osigurati kontinuitet rasta preostaloj ribi u kavezu kroz smanjenu gustoću. Izlove je potrebno obaviti tako da u najmanjoj mjeri utjeću na rast preostale ribе. Nepravilan, periodički izloz kroz dulje vrijeme vrijeme dovodi ribu u stanje stresa i posljedično do usporenog rasta i slabijeg iskorištavanja hrane te moguće izbijanja bolesti. Očekivano trajanje kompletnog ciklusa jedne generacije iznosi oko 18 mjeseci.

Uginuće ribe:
Predviđa se ukupan mortalitet oko 8-12 % (Farabi i sur., 2020). Prethodno provedena cijepljenja, kada je riba veličine 100 g, uglavnom protiv vibrioze i furunkuloze, trebala bi osigurati efikasnu zaštitu.

Rizici proizvodnje:
Osnovni potencijalni rizici u proizvodnji su:
- pojačano uginuće ribe;
- bijeg ribе;
- havarije uzgojnih komponenti.

1.5 BOLESTI U UZGOJU KALIFORNIJSKE PASTRVE
Kalifornijska pastrva u moru izložena je istim bolestima kao i ona u slatkovodnom uzgoju, virusnim, bakterijskim i nametničkim bolestima. Ovdje je potrebno spomenuti one bolesti koje su češće i one koje se obavezno prijavljuju nadležnim tijelima, odnosno bolesti koje se suzbijaju po zakonu (Naredba o mjerama zaštite zdravlja životinja od zaraznih i nametničkih bolesti i njihovom financiranju u 2020. godini – NN 7/2020). Određene bolesti mogu predstavljati ozbiljan problem zbog velikih mortaliteta te dovesti cijeli uzgoj u pitanje. Pravilnim praćenjem ribe u uzgoju s naglaskom na bolesti djeluje se preventivno te se na vrijeme može reagirati, držeći se one poznate da je preventiva najbolja kurativa. U svrhu
Studija utjecaja na okoliš

spriječavanja bolest poduzet će se cijepljenje. Ukoliko i dođe do pojave određene bolesti bitno je što prije reagirati i sve prijaviti nadležnim službama jer se u protivnom izlažemo potencijalno velikim gubicima što se u svakom slučaju želi izbjeći. Uginule i te sumnjive jedinke pastrve iz uzgoja treba redovito slati na analizu u ovlaštenu veterinarsku ustanovu kako bi se utvrdio uzrok uginuća. Samo na temelju nalaza ovlašteni veterinar smije propisati potrebne mjere zaštite.

Nositelj zahvata obvezan je poštivati sve zakonske i podzakonske odredbe te se preporuča uska suradnja s nadležnim veterinarskim institucijama. Dobre zooprofilaktičke mjere, kvalitetna mlađ i hrana, zajedno s pravilnim upravljanjem (pravilna tehnologija) predstavljaju temelj smanjenja učestalosti izbivanja bolesti kod riba u uzgoju.

1.5.1 Pregled najčešćih ili najopasnijih oboljenja

- Virusne bolesti

Virusne bolesti predstavljaju velik problem zbog činjenice da za njih nema lijeca ni efikasnog tretmana nakon izbivanja. Zbog toga njima treba posvetiti dužnu pažnju od samog početka, vodeći računa o samom porijeklu ribe, odnosno od kojeg proizvođača se nabavlja ikra. Nakon toga je iznimno bitno pridržavati se osnovnih zoohigijenskih mjera.

Virusna hemoragična septikemija (VHS)

Ova bolest se nalazi u Naredbi o mjerama zaštite zdravlja životinja od zaraznih i nametničkih bolesti i njihovom financiranju u 2020. godini (NN 7/2020) te se određuje provedba programa nadziranja, iskorjenjivanja ili kontrole, odnosno mjera otkrivanja, nadziranja, sprečavanja pojave i širenja, kontrole, suzbijanja i njenog iskorjenjivanja. Virus pripada u grupu RNA virusa te zahvaća i vrste morskih riba. Javlja se pri temperaturama nižim od 15ºC i može izazvati značajna ugibanja. Znacovi koji upućuju na ovu bolest su tamna koža, egzofthalmus, krvarenja na bazama peraja i oko očiju, a riba djeluje letargično i izdvojena. Bolest se lako prenosi jer se virus širi putem vode, inficirane ribe, opreme, ptica i sl. Prilikom narudžbe ikre potrebno je ishodovati suglasnosti kojima se dokazuje odsutnost bolesti. Kako je bolest u Naredbi, proizvođač je zakonski obavezan prijaviti je Veterinarskom Institutu i Upravi Veterinarstva.
Zarazna hematopoetska nekroza

Zarazna nekroza gušterače (IPN)

Bolest je poznata kod više vrsta morskih i slatkovodnih riba, a uzročnik pripada u skupinu birnavirusa. Najčešće se javlja i uzrokuje najveće uginuće na temperaturama ispod 15ºC. Započinjanje ove bolesti može uslijediti najčešće nakon stresa poput prebacivanja ribe u more, što je zabilježeno kod lososa. Znakovi bolesti su poremećaj u plivanju, gubitak apetita, proširen abdomen uz tamniju pigmentaciju kože uz nekrotične degenerativne promjene gušterače. Bolest nalikuje na VHS i prenosi se horizontalnim i vertikalnim putem (zaražena riba, voda, oprema, ptice, paraziti).

Potencijalne važnije virusne bolesti su još epizootska hematopoetska nekroza, bolest gušterače kod lososa, *Oncorhynchus masou* virusnu bolest i dr.

• Bakterijske bolesti

Kod bakterijskih bolesti najvažnije je pravilno održavanja zoohigijenskih uvjeta na uzgajalištu. Ako dođe do pojave bolesti neophodno je što prije uzeti uzorke ribe za identifikaciju uzročnika kako bi se izradio antibiogram. Kako to rade ovlašteni veterinari i ustanove potrebno je hitno reagirati. Nekontrolirana upotreba antibiotika na vlastitu ruku dovodi do rezistentnosti pojedinih bakterijskih sojeva te u budućnosti do smanjenja uspješnog liječenja i prevencije uz povećane gubitke. Najčešće se primjenjuju tretmani oralno, preko hrane, jer je provođenje kupki u nekim slučajevima nemoguće.

Vibrioza

Ova bakterijska bolest se javlja kod gotovo svih vrsta slatkovodnih i morskih riba. Povezuju je s pojavom većih uginuća u toplijim mjesecima koja nastaju zbog naglog dizanja i spuštanja temperature. Međutim, postoji i zimski oblik koja se javlja u zimskim mjesecima. U
perakutnom tijeku bolesti su gubici značajni, a izostaju klinički znakovi bolesti. U drugim slučajevima nalazimo hemoragična mjesta oko anusa, bazi peraja, trbuhi i lezije na koži. U unutrašnjosti, nakon razudbe nalazimo enteritis, krvarenja oko crijeva i piloričnih nastavaka, masnom tkivu, muskulaturi i drugdje. nalik hemoragičnoj septikemiji. Neophodno je voditi računa o uzgojnim uvjetima jer se uzročnik širi putem inficirane ribe, opreme, vode i zadržava se u stupcu vode i sedimentu.

Furunkuloza

Jersinioza
Uzročnik je gram negativna bakterija *Yersinia ruckeri*, javlja se u većem rasponu temperatura i u morskoj vodi uzrokuje manje gubitke. Kliničkom slikom se nalaze hemoragične septikemije, i probavni trakt ispunjen tekućinom i plinovima, tamnija koža, najviše krvarenja oko ustiju, i oko peraja. Bolest se prenosi horizontalnim putem preko inficirane ribe. Uzročnik može opstati u vodenom stupcu i sedimentu tijekom dužeg razdoblja što može dovesti do ponavljanja bolesti. Ostale značajnije bakterijske bolesti su bolest škrga, bakterijska bolest bubrega, infekcije s bakterijama *Fleksibacter maritimus*, *Pseudomonas* sp. i druge.

- **Nametničke bolesti**
Brojni nametnici poznati su da uzrokuju infestacije kod divljih ribljih vrsta, a često i kod ribe u uzgoju. Pošto svaki uzgoj podrazumijeva prisutnost i mogućnost infestacije i invazije makroorganizma nametnicima, pojedinačno ih nećemo navoditi. Bitno je tehnološke uvjete
prilagoditi i paziti na prve znakove ovih bolesti kako bi se hitnom reakcijom moglo izdvojiti uzgojne kaveze.

• Ostale bolesti
Prije su bile izražene nutritivne bolesti, odnosno bolesti prouzročene pogreškama u prehrani, koje su u današnje vrijeme vrlo rijetke i zanemarive jer se dobro poznaju hranidbene potrebe za uzgoj kalifornijske pastrve te je hrana u svim razvojnim fazama dobro prilagođena. Pravilna i pravovremeno provedena smoltifikacija je od ključne važnosti za sprječavanje ugibanja ribe kao i izbjegavanja bolesnih stanja prouzročenih stresom. Ovdje je potrebno još jednom napomenuti da je porijeklo ribe od poznatih dobavljača najvažnije kao i potvrda o izostanku bolesti kod istih. Kako je prva faza nakon dobave ikre u slatkoj vodi, bitno je imati stalni nadzor nakon valjenja i ne prepustiti drugima vođenje brige oko mladi.
2. VARIJANTNA RJEŠENJA ZAHVATA

2.1 PRIJEDLOG NAJPRIKLADNIJE VARIJANTE ZAHVATA

Kavezni uzgoj riba u Velebitskom kanalu na planiranim lokacijama V1 (Uvale Trsina i Tvrduša), V2 (Uvale Bilančevica i Bočarije Vele), V3 (Uvale Velika i Mala Črnika) i V4 (Uvale Marasovka i Pećci), prema svim pokazateljima stanja okoliša i potencijalnim utjecajima koji su opisani u ovoj studiji, ne predstavlja opasnost za okoliš. U okviru varijantnih rješenja nisu razmatrane alternativne lokacije jer su one zadane prostornim planom i već su maksimalno međusobno razmaknute tako da utjecaj jednog uzgajališta na susjedno bude minimalan. Međutim, razmatrana su dva varijantna rješenja s obzirom na utjecaj prema obali što je najkritičnije:

Kao varijantna rješenja razmatrana su dva rješenja:

a) Kavezni uzgoj riba u redove paralelno s obalom

b) Kavezni uzgoj riba ortogonalno na obalu

a) Kavezni postavljeni u redove paralelno s obalom

Kavezni uzgoj riba u redove paralelno s obalom imaju veću preglednost s obale, ali sukladno smjeru plimnog i rezidualnog strujanja slabiji je protok vode kroz uzgajalište. Također, paralelno postavljeni kavezni uzgoj riba imaju veći utjecaj na more između kaveza i obale. Uz to, kako dubina raste u smjeru od obale do najbliže točke uzgajališta, utjecaj na dno bi tad bio najveći. Sukladno navedenim argumentima ova se varijanta ne predlaže.

b) Kavezni postavljeni ortogonalno na obali

Sukladno smjeru morske struje uzrokovane plimotvornom silom i smjeru rezidualne struje, vrijeme izmjene vode u uzgajalištu je kraće. Također, utjecaj povišenih koncentracija organske tvari na prostor morskog stupca između uzgajališta i obale je minimalan. Na koncu, imajući na umu da dubina mora raste od obale do prve točke uzgajališta i dalje, utjecaj na dno će zauzet veće područje raspršenja, a imati će manji intenzitet na točki najveće koncentracije organske tvari. Sukladno argumentima u a) i b) predlaže se varijanta b) čiji utjecaj na sediment i vodeni stupac između uzgajališta i obale ima nesumnjivo manji intenzitet. Utjecaj na okoliš varijante b) se detaljno razmatra u poglavlju 4. ali na kraju poglavlja se rezultati uspoređuju s varijantom a) koja se ne predlaže.
3. PODACI O OKOLIŠU I OPIS LOKACIJA ZAHVATA

3.1 PROSTORNO-PLANSKA DOKUMENTACIJA

Planirani zahvati uspostave uzgajališta kalifornijske pastrve na četiri lokacije u Velebitskom kanalu kapaciteta pojedinačnog uzgajališta od 700 t/godišnje (lokacije V1 – Uvala Tvrduša i V2 – Uvala Bočarije), odnosno 3 500 t/godišnje (V3 – Uvala Velika Črnika i V4 – Uvale Marasovića) nalaze se na području Ličko-senjske županije, na području koje administrativno pripada Gradu Senju, odnosno Općini Karlobag.

Za analizu usklađenosti zahvata s prostorno-planskom dokumentacijom u daljnoj analizi će se razmatrati sljedeći relevantni prostorni planovi:

- Prostorni plan Ličko-senjske županije („Županijski glasnik“ broj 16/02, 17/02, 19/02, 24/02, 3/05, 2/06, 15/06, 19/07, 13/10, 22/10, 19/11, 4/15, 7/15, 6/16, 15/16, 5/17 i 8/17),
- Prostorni plan uređenja Grada Senja („Službeni glasnik Grada Senja“ broj 11/06, 1/12, 6/14, 10/14 i 15/18),
- Prostorni plan uređenja Općine Karlobag („Županijski glasnik“ broj 3/08 i 12/10).

Za potrebe pokretanja i provedbu postupka procjene utjecaja zahvata na okoliš pri Ministerstvu gospodarstva i održivog razvoja, ishodena je Potvrda o usklađenosti s prostornim planovima za zahvat u prostoru: Uzagajališta kalifornijske pastrve na četiri lokacije u Velebitskom kanalu, na području Grada Senja i Općine Karlobag u Ličko-senjskoj županiji (KLASA: 350-02/20-02/41, URBROJ: 531-06-2-1-1-20-2) koju je izdalo Ministerstvo prostornog uređenja, gradijeteljstva i državne imovine, Uprava za prostorno uređenje i dozvole državnog značaja, Sektor lokacijskih dozvola i investicija, u Zagrebu, 30. rujna 2020. godine (Prilog 3).

Ovjereni izvodi u tekstualnom i grafičkom obliku relevantnih prostornih planova nalaze se u prilozima ove Studije (Prilozi 4, 5 i 6).

PROSTORNI PLAN LIČKO-SENJSKE ŽUPANije

Prostorni plan Ličko-senjske županije („Županijski glasnik“ broj 16/02, 17/02, 19/02, 24/02, 3/05, 2/06, 15/06, 19/07, 13/10, 22/10, 19/11, 4/15, 7/15, 6/16, 15/16, 5/17 i 8/17) je temeljni dokument prostornog uređenja koji osigurava preduvjete za prostorni razvoj i uređenje cjelokupnog područja Županije među kojima je i gospodarski razvoj odnosno razvoj marikulture.
ANALIZA TEKSTUALNOG DIJELEA PROSTORNOG PLANA LIČKO-SENJSKE ŽUPANIJE

Odredbama za provođenje, a osobito člancima 32., 33. i 34. definirani su uvjeti za uspostavu marikulture, a relevantne odredbe navodimo u nastavku:

UVJETI SMJEŠTAJA GOSPODARSKIH SADRŽAJA U PROSTORU

Članak 19.
Planom su načelno određeni prostorni i drugi uvjeti za smještaj gospodarskih djelatnosti, njihovih građevina i uređaja za sljedeće gospodarske djelatnosti: šumarstvo, poljoprivreda, stočarstvo i ribarstvo, ugostiteljstvo i turizam, energetske građevine, eksploatacija mineralnih sirovina, ostale gospodarske djelatnosti: proizvodne i poslovne. Detailnija namjena i uvjeti smještaja gospodarskih djelatnosti iz prethodnog stavka određuju se PPUO/G odnosno stručnom podlogom za lokacijsku dozvolu, a temeljem smjernica, kriterija i mjera ovog Plana.

Članak 20.
Gospodarske djelatnosti iz članka 19. ove Odluke s njihovim prostornim odrednicama koje karakteriziraju vrsta, veličina, prostorna organizacija i oblikovanje, smještaju se u prostore uz sljedeće uvjete:

- da su u skladu s temeljnom razvojnom orijentacijom prostornog i gospodarskog razvoja Županije,
- da su razvojno poticajne, da potiču demografsku obnovu i doprinose ekonomskoj sigurnosti domaćinstava, da ne predstavljaju smetnje za okoliš i da su ekološki prihvatljive, te da u zauzimanju prostora racionalno koriste zemljište, druge temeljne resurse, energiju i vodu,
- da ne predstavljaju smetnje za druge oblike korištenja prostora u okruženju,
- da su u skladu s tradicijom i lokalnim uvjetima te da se temelje prvenstveno na lokalnim resursima,
- da postojeće nedovoljno iskorištene kapacitete u ruralnim i drugim sredinama koriste za preradu poljoprivrednih i stočarskih proizvoda i morskog ulova, da se uz obalu mora prostor namjenjuje isključivo za djelatnosti, odnosno one tehnološke procese,
rekreaciju i sport koje su vezane uz more, usklađeno s odredbama o zaštiti mora i obalnog pojasne, usklađeno s drugim djelatnostima i namjenama prostora.

Poljoprivreda, stočarstvo i ribarstvo

Članak 32.

Područja za uzgoj riba, rakova i školjaka (marikulturu) moraju imati zadovoljavajuće biofizičke karakteristike (izloženost otvorenom moru, dubina, vjetar, valovi, pridnena topografija, struktura sedimenata, mutnoća, kakvoća mora, itd.), znanstvenom provjerom utvrđen moguć kapacitet i veličinu zahvata, te potrebnu infrastrukturu (pristupni putovi, komunikacije, električna energija, proizvodnja hrane za uzgoj, itd.). Djelatnost marikulture može se odrediti na svim područjima pogodnim s gledišta uvjeta za tu djelatnost, izuzev područja:

- na kojima prevladava nepovoljna hidrodinamika, nezadovoljavajući higijenski uvjeti i eutrofnja područja s rizicima cvatnje toksičnih fitoplanktona,
- na kojima je izraženo onečišćenje zbog blizine urbanih centara, lučkih i industrijskih djelatnosti,
- na kojima je intenzivan pomorski promet,
- koja su od veće gospodarske važnosti i intenzivne rekreacijske aktivnosti,
- posebne namjene (npr. vojna područja),
- na osjetljivim dijelovima posebno zaštićenih područja,
- zaštićenog obalnog područja mora u širini od 300 m od obalne crte, za uzgoj plave ribe.

Članak 33.

Generalno određivanje lokacija za marikulturu provodi se putem PPŽ u skladu s vrednovanjem obalnog područja i mora u odnosu na kompatibilnost takve namjene i drugih namjena kao što su turizam, rekreacija, osobito kupališta, čuvanje prirodnih uvala i pomorskih djelatnosti temeljem studije vrednovanja mora i podmorja Županije koja čini sastavni dio dokumentacije PPŽ-a.

Članak 34.

Detaljnije lokacije za djelatnost marikulture određuju se PPUO/G temeljem raspoloživih podataka o namjeni prostora kopna, te datih smjernica u okviru studije vrednovanja mora i podmorja Županije, pri čemu se Prostornim planom uređenja utvrđuje tip marikulturnih djelatnosti ovisno o ponuđenim mogućnostima iz navedene studije, uvažavajući zakonom propisane uvjete i smjernice ovog Plana koje obuhvaćaju:
Studija utjecaja na okoliš

- Minimalna udaljenost do zona izgradnje na kopnu iznosi 1000 m,
- Minimalna dubina mora 30 m (za određene vrste uzgoja 50 m),
- Mogućnost neposrednog obalnog uzgoja (obiteljske farme), kroz manju proizvodnju do 50 t u okviru obiteljske farme, samo na ograničenom broju lokacija izvan ili na vanjskom rubu uvala,
- Uzgoj plave ribe (tuna i sl.) sukladno zakonskim propisima o ZOP-u pri čemu se valorizacija pojedine lokacije za predmetnu namjenu provodi u okviru PPUO/G temeljem daljnjih istraživanja.

OSVRT NA TEKSTUALNE ODREDBE PROSTORNOG PLANA LIČKO-SENJSKE ŽUPANIJE

Na temelju Studije vrednovanja mora i podmorja Ličko-senjske županije, Prostornim planom Ličko-senjske županije generalno su određene lokacije za marikulturu (čl. 33), a detaljnije određivanje lokacija pogodnih za marikulturu određuje se u prostornim planovima gradova i općina (čl. 34.). Osim okvirno određenih lokacija, planom su propisani uvjeti koje lokacije uzgajališta moraju zadovoljiti – minimalna udaljenost do zona izgradnje na kopnu od 1 000 m te minimalna dubina mora od 30 m (čl. 34).

ANALIZA GRAFIČKOG DIJELA PROSTORNOG PLANA LIČKO-SENJSKE ŽUPANIJE

Od ukupno četiri lokacije za uzgoj kalifornijske pastrve, dvije lokacije (V1 - Uvala Tvrduša i V2 - Uvala Boćarije) administrativno pripadaju Gradu Senju, dok preostale dvije (V3 - Uvala Velika Črnika i V4 - Uvale Marasovića) administrativno pripadaju Općini Karlobag. Budući da su ovim prostornim planom lokacije za marikulturu određene i ucrtane generalno, u nastavku analize grafičkog dijela, označit će se lokacija koja je najbliža predmetnoj lokaciji. Prema kartografskim prikazima Korištenje i namjena prostora, područja u kojima je planirana uspostava uzgajališta generalno su označene kao površine za razvoj marikulture. Sve lokacije planiranih uzgajališta smještene su izvan ZOP-a na udaljenosti od oko 320 m od obalne crte (Slike 3_01, 3_03, 3_05, 3_07).

Prema kartografskim prikazima Uvjeti korištenja i zaštite prostora, sve lokacije planiranih uzgajališta nalaze se izvan područja posebnih uvjeta korištenja odnosno izvan područja arheološke baštine (podmorskih arheoloških lokaliteta) i zaštićenih dijelova prirode (Slike 3_02, 3_04, 3_06, 3_08).
Slika 3_01 Izvadak iz kartografskog prikaza 1.a. Korištenje i namjena prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V1 lokacijom zahvata (Uvale Trsina i Tvrđuša)

Slika 3_02 Izvadak iz kartografskog prikaza 3. Uvjeti korištenja i zaštite prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V1 lokacijom zahvata (Uvale Trsina i Tvrđuša)
Studija utjecaja na okoliš

LOKACIJA V2 – UVALA BOĆARIJE

Slika 3_03 Izvadak iz kartografskog prikaza 1.a. Korištenje i namjena prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V2 lokacijom zahvata (Uvala Bočarije i Bilačevica)

Slika 3_04 Izvadak iz kartografskog prikaza 3. Uvjeti korištenja i zaštite prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V2 lokacijom zahvata
LOKACIJA V3 - UVALA VELIKA ČRNIKA

Slika 3_05 Izvadak iz kartografskog prikaza 1.a. Korištenje i namjena prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V3 lokacijom zahvata (Uvale Velika i Mala Črnika)

Slika 3_06 Izvadak iz kartografskog prikaza 3. Uvjeti korištenja i zaštite prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V3 lokacijom zahvata (Uvale Velika i Mala Črnika)
Studija utjecaja na okoliš

LOKACIJA V4 – UVALE MARASOVIĆA

Slika 3_07 Izvadak iz kartografskog prikaza 1.a. Korištenje i namjena prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V4 lokacijom zahvata (Uvale Marasovka i Pečci)

Slika 3_08 Izvadak iz kartografskog prikaza 3. Uvjeti korištenja i zaštite prostora iz Prostornog plana Ličko-senjske županije s ucrtanom V4 lokacijom zahvata (Uvale Marasovka i Pečci)
ZAKLJUČAK:

Prostornim planom Ličko-senjske županije određene su generalne lokacije pogodne za marikulturu te se propisuju opći uvjeti smještaja takvih zahvata u prostoru. Planirani zahvati nalaze se u zonama generalno određenih lokacija pogodnih za marikulturu, lokacije uzgajališta udaljene su više od 1 000 m do zona izgradnje na kopnu te je minimalna dubina mora veća od 30 m. Također, znanstvenim istraživanjima provedenim prije pokretanja postupka procjene utjecaja na okoliš, za svaku planiranu lokaciju uspostave uzgajališta utvrđena je pogodnost za tu namjenu, stoga je planirani zahvat uspostave uzgajališta na četiri lokacije u Velebitskom kanalu (V1 - Uvala Tvrduša, V2 – Boćarije Vele, V3 – Uvala Velika Črnika i V4 – Uvale Marasovića) u skladu s Prostornim planom Ličko-senjske županije.

PROSTORNI PLAN UREĐENJA GRADA SENJA

Prostornim planom uređenja Grada Senja („Službeni glasnik Grada Senja” broj 11/06, 1/12, 6/14, 10/14 i 15/18) predviđene su lokacije za uzgoj ribe manjeg kapaciteta u priobalnom području odnosno unutar ZOP-a. Budući da današnji koncept razvoja marikulture zahtjeva kavezni uzgoj u akvatoriju većih dubina i izvan granice ZOP-a, priobalne lokacije predviđene trenutno važećim planom nisu podobne za razvoj marikulture te takvu namjenu u prostoru Plan u načelu niti predviđa, a niti ne određuje lokacije.

Tekstualnim dijelom Plana (točka 3.2.2.9. Vodene površine, podnaslov Gospodarsko-marikulturne površine) zahvati marikulture se ne ograničavaju ukoliko zadovoljavaju zakonske propise i ekološki su prihvatljivi.

Svaki mogući zahtjev za koncesiju u pomorskom pojasu mora prije realizacije biti u skladu s važećim zakonskim propisima, te mora biti provjerena studijama koje bi pokazale: podobnost obzirom na prirodne uvjete pojedinog lokaliteta, financijsku isplativost projekta, kompatibilnost s drugim namjenama (posebice turističkom i rekreacijskom), te ekološku održivost sustava, obzirom na negativna iskustva koja su se pokazala posebice kod kaveznog uzgoja tuna.
ANALIZA TEKSTUALNOG DIJELA PROSTORNOG PLANA UREĐENJA GRADA SENJA

U nastavku se navode odredbe za provođenje koje se odnose na razvoj marikulture u priobalnom području, ali mogu biti korisne smjernice za planiranje zahvata marikulture izvan ZOP-a.

2. UVJETI ZA UREĐENJE PROSTORA
2.3. IZGRAĐENE STRUKTURE IZVAN GRAĐEVINSKIH PODRUČJA

Članak 55.
1) Izvan građevinskog područja naselja i izvan izdvojenog građevinskog područja van naselja, moguća je rekonstrukcija postojećih objekata izgrađenih u skladu sa zakonom, te izgradnja objekata za slijedeće namjene:
 Poljoprivreda, šumarstvo, ribarstvo

 ... objekti marikulture (uzgajališta riba i drugih morskih organizama)

 ...

Članak 64.

MARIKULTURA

(1) Ovim Planom se određuju okvirne lokacije za uzgoj riba i drugih morskih organizama (okvirne lokacije uzgajališta). Planom se ne određuje detaljna lokacija pojedinog uzgajališta, već će se uzeti ona koja je najbliža okvirnoj lokaciji, a pozitivno je određena istraživanjima i ocjenom pogodnosti lokacije za uzgoj s obzirom na prevladavajuća obilježja lokacije, ovisno o predviđenoj namjeni (uzgoj bijele ili plave ribe, rakova, školjkaša), a sve u skladu sa zakonskim propisima i smjernicama ovog Plana. Za svaku okvirnu lokaciju uzgajališta je dozvoljeno odrediti samo jednu detaljnu lokaciju uzgajališta.

(2) Okvirne lokacije za uzgoj određene ovim Planom su prikazane na kartografskom prikazu br. 1. „Korištenje i namjena površina“ mj. 1:25000, i vezane su za uvale (popis od sjevera prema jugu):
 - Vela Ivanča
 - Trsine
 - Tvrđuša
 - Vlaka
 - Burnjača
(3) Ovim Planom se kapaciteti uzgajališta ograničavaju na vrijednosti za koje nije obavezna izrada studije procjene utjecaja na okoliš. Najveći dozvoljeni kapaciteti uzgajališta su za:
- uzgajališta bijele ribe u zaštićenom obalnom području mora (ZOP), do 100 t
- uzgajališta ribe između 300 m i 1 NM (nautičke milje) udaljenosti od obale, do 700 t
- uzgajališta ribe dalje od 1 NM udaljenosti od obale, do 3500 t
- uzgajališta školjkaša unutar ZOP-a, do 400 t

(4) Ocjena pogodnosti lokacije mora kategorijom „dobro“ zadovoljiti najmanje tri četvrtine kriterija propisanih Pravilnikom o kriterijima o pogodnosti dijelova pomorskog dobra za uzgoj riba i drugih morskih organizama.

(5) Uzgajališta plave ribe se ne smiju postavljati unutar ZOP-a.

(6) Uzgajališta se ne smiju postavljati nad naseljima posidonije.

(7) Uzgajališta čija je okvirna lokacija određena uz sidrišta, ne smiju ometati pristup sidrištima, niti umanjivati zaštitne značajke i upotrebljivost sidrišta za plovila.

(8) Minimalna udaljenost od građevinskih područja na kopnu iznosi 1000 m

(9) Neposredni obalni uzgoj (obiteljske farme) moguće je samo kao manja proizvodnja, kapaciteta do 50 t, i to izvan ili na vanjskom rubu uvala.

(10) Moraju se izbjegavati mikrolokacije na kojima prevladava nepovoljna hidrodinamika, nezadovoljavajući higijenski uvjeti i eutrofna područja s rizicima tvrtkih fitoplanktona.

(11) Kopneni dio morskog uzgajališta koji sadrži proizvodnu logistiku se smješta unutar obližnjih građevinskih područja naselja, prema uvjetima za gradnju i uređenje površina gospodarske namjene.

OSVRT NA TEKSTUALNE ODREDBE PROSTORNOG PLANA UREĐENJA GRADA SENJA

Tekstualnim odredbama Prostornog plana uređenja Grada Senja okvirno su određene lokacije za marikulturu (ukupno devet lokacija) te se na temelju okvirno određenih lokacija dopušta odabir po jedne lokacije koja je znanstvenim istraživanjem ocijenjena kao pogodna lokacija za uzgoj odnosno uspostavu marikulture (čl. 64 – stavak 1 i 2). Nadalje, tekstualnim
odredbama navode se uvjeti koje lokacije uzgajališta moraju zadovoljiti (čl. 64 – stavci 3-10). Iako se čl. 64 stavak 3 ograničavaju kapaciteti uzgoja na vrijednosti za koju nije obavezna procjena utjecaja zahvata na okoliš. Osim spomenutog uvjeta, propisani su i drugi uvjeti koje buduće uzgajalište mora zadovoljiti iz čega izdvajamo - ocjena pogodnosti lokacije mora kategorijom „dobje“ zadovoljiti najmanje tri četvrtine kriterija propisanih Pravilnikom o kriterijima o pogodnosti dijelova pomorskog dobra za uzgoj riba i drugih morskih organizama (čl. 64 – stavak 4) i minimalna udaljenost do zona izgradnje na kopnu od 1 000 m (čl. 64 – stavak 8).

ANALIZA GRAFIČKOG DIJELA PROSTORNOG PLANA UREĐENJA GRADA SENJA

Lokacije planiranih uzgajališta na administrativnom području Grada Senja obuhvaćaju lokacije određene Planom: V1 – Vrulja Tvrduša i V2 – Boćarije Vele.

Na kartografskim prikazima Korištenje i namjena prostora označene su isključivo priobalne lokacije za razvoj marikulture. Obje lokacije u kojima se planira realizacija zahvata nalaze se na području okvirno određenih lokacija pogodnih za razvoj marikulture: vrulja Tvrduša i Boćarije Vele. Obje lokacije smještene su izvan ZOP-a, na udaljenosti od oko 320 m od obalne crte te više od 1 000 m od zona izgradnje na kopnu (slike 3_09 i 3_11).

Prema kartografskim prikazima Uvjeti korištenja, uređenja i zaštite prostora, lokacije predviđene za uspostavu marikulture nalaze se izvan područja posebnih uvjeta korištenja odnosno izvan područja arheološke baštine (podmorskih arheoloških lokaliteta) i zaštićenih dijelova prirode (slike 3_10 i 3_12).
Na području zahvata nema livada morske cvjetnice Posidonia oceanica.
LOKACIJA V1 – UVALA TVRDUŠA

Slika 3_09 Izvadak iz kartografskog prikaza 1. Korištenje i namjena prostora iz Prostornog plana uređenja Grada Senja s ucrtanom V1 lokacijom zahvata (Uvale Trsina i Tvrduša)

Slika 3_10 Izvadak iz kartografskog prikaza 3. Uvjeti za korištenje, uređenje i zaštitu prostora iz Prostornog plana uređenja Grada Senja s ucrtanom V1 lokacijom zahvata
LOKACIJA V2 – BOĆARIJE VELE

Slika 3_11 Izvadak iz kartografskog prikaza 1. Korištenje i namjena prostora iz Prostornog plana uređenja Grada Senja s ucrtanom V2 lokacijom zahvata (Uvale Boćarije i Bilančevica)

Slika 3_12 Izvadak iz kartografskog prikaza 3. Uvjeti za korištenje, uređenje i zaštitu prostora iz Prostornog plana uređenja Grada Senja s ucrtanom V2 lokacijom zahvata
ZAKLJUČAK:

Prostornim planom uređenja Grada Senja okvirno su određene lokacije pogodne za razvoj marikuture (ukupno devet lokacija). Predmetnim zahvatom planira se uspostava dva uzgajališta na administrativnom području Grada Senja – Uvala Tvrduša i Boćarije Vele. Obje planirane lokacije nalaze se na udaljenosti od oko 320 m od obalne crte, odnosno izvan granice ZOP-a, na udaljenosti većoj od 1 000 m do zona izgradnje na kopnu, a minimalna dubina mora na planiranim lokacijama veća je od 30 m.

Sukladno navedenome, planirani zahvat uspostave uzgajališta na lokacijama V1 – Uvala Tvrduša i V2 – Boćarije Vele u skladu je s Prostornim planom uređenja Grada Senja.
PROSTORNI PLAN UREĐENJA OPĆINE KARLOBAG

Prostornim planom uređenja Općine Karlobag („Županijski glasnik” broj 3/08 i 12/10) prepoznata je pogodnost akvatorija Općine za razvoj marikulture većeg i manjeg opsega proizvodnje, odnosno unutar i izvan ZOP-a.

Tekstualnim dijelom Plana (točka 3.3.1.2. Gospodarske djelatnosti, podnaslov Ribarstvo i marikultura), odredbama za provođenje i grafičkim dijelom navedene su i prikazane okvirne lokacije za uspostavu marikulture te su navedeni uvjeti za njihovu uspostavu.

U pogledu zahvata marikulture, tekstualni i grafički dio Prostornog plana uređenja Općine Karlobag uskladen je s planom višeg reda, odnosno Prostornim planom Ličko-senjske županije.

ANALIZA TEKSTUALNOG DIJELA PROSTORNOG PLANA UREĐENJA OPĆINE KARLOBAG

U nastavku se navode odredbe za provođenje relevantne za planirani zahvat:

1. UVJETI ZA ODREĐIVANJE NAMJENE POVRŠINA

1.6. NAMJENA MORA

1.6.4. Zone i lokaliteti za uzgoj riba i školjaka - marikultura

Članak 26.
Planom su određene lokacije za uzgajališta ribe na temelju STUDIJE VREDNOVANJA MORA I PODMORJA LIČKO-SENJSKE ŽUPANIJE, koja je dala generalnu ocjenu pogodnosti pojedinih dijelova obale za prihvat djelatnosti uzgoja u moru – marikulture:
- Područje izvan Uvale Porat (Lukovo Šugarje) (1)
- Uvala Koromačina (1)
- Uvala Smojveruša (1)
- Uvale Marasovića i uvale Peće (2)
- Uvale Kralić do uvale Drvarica (3)
Studija utjecaja na okoliš

- Uvala Badnjina (1)

Navedene lokacije analizirane su i sa aspekta moguće inkompatibilnosti sa namjenom i korištenjem kopna, te je ukupni broj lokacija reduciran na one koje zadovoljavaju slijedeće uvjete:

- minimalna udaljenost do zona izgradnje na kopnu iznosi 1000 m
- minimalna dubina mora 30 m (za određene vrste uzgoja 50 m)
- mogućnost neposrednog obalnog uzgoja (obiteljske farme), kroz manju proizvodnju do 50 t u okviru obiteljske farme, samo na ograničenom broju lokacija izvan ili na vanjskom rubu uvala
- uzgoj plave ribe (tuna i sl.) sukladno zakonskim propisima o ZOP-u pri čemu se valorizacija pojedine lokacije za predmetnu namjenu provodi temeljem daljnjih istraživanja.

U zaštićenom obalnom području mora nije dopušteno postavljanje instalacija za uzgoj tuna i plave ribe.

Postojeći i planirani sadržaji marikulture prikazani su u grafičkom dijelu Plana, kartografski prikaz broj 1. KORIŠTENJE I NAMJENA POVRŠINA u mjerilu 1:25000 i broj 4. GRAĐEVINSKA PODRUČJA u mjerilu 1:5000.

OSVRT NA TEKSTUALNE ODREDBE PROSTORNOG PLANA UREĐENJA OPĆINE KARLOBAG

Na temelju Studije vrednovanja mora i podmorja Ličko-senjske županije i Prostornog plana Ličko-senjske županije generalno su određene lokacije za marikulturu (ukupno devet lokacija) te se na temelju generalno određenih lokacija dopušta odabir po jedne lokacije za uzgoj odnosno uspostavu marikulture (čl. 26 - stavak 1). Nadalje, člankom 26. određeni su uvjeti koje lokacije uzgajališta moraju zadovoljiti – minimalna udaljenost do zona izgradnje na kopnu od 1 000 m te minimalna dubina mora od 30 m.

Predmetni zahvat predviđa uspostavu uzgajališta na lokacijama predviđenih Prostornim planom:

- Uvale Marasovića i uvale Pećci (2) – jedna lokacija – Uvale Marasovića (V4),
- Uvale Kralić do uvale Drvarica (3) – jedna lokacija – Uvala Velika Črnika (V3).
ANALIZA GRAFIČKOG DIJELA PROSTORNOG PLANA UREĐENJA OPĆINE KARLOBAG

Lokacije planiranih uzgajališta na području Općine Karlobag obuhvaćaju lokacije određene Planom: V3 – Uvala Velika Črnika i V4 – Uvale Marasovića

Na kartografskim prikazima Korištenje i namjena prostora označene su okvirne lokacije za uspostavu marikulture te se lokacije zahvata nalaze u područjima koje su odredbama za provođenje navedene kao pogodne lokacije za uspostavu istih. Lokacije planiranog zahvata nalaze se na udaljenosti od oko 320 m od obalne crte odnosno izvan ZOP-a (slike 3_13 i 3_15).

Prema kartografskim prikazima Uvjeti korištenja i zaštite prostora, lokacije planiranog zahvata nalaze se izvan područja posebnih uvjeta korištenja odnosno izvan područja arheološke baštine (podmorskih arheoloških lokaliteta) i zaštićenih dijelova prirode (slike 3_14 i 3_16).

Na području zahvata nema livada morske cvjetnice *Posidonia oceanica.*
LOKACIJA V3 – UVALA VELIKA ČRNIKA

Slika 3_13 Izvadak iz kartografskog prikaza 1. Korištenje i namjena prostora iz Prostornog plana uređenja Općine Karlobag s ucrtanom V3 lokacijom zahvata (Uvale Velika i Mala Črnika)

Slika 3_14 Izvadak iz kartografskog prikaza. Uvjeti korištenja i zaštite prostora iz Prostornog plana uređenja Općine Karlobag s ucrtanom V3 lokacijom zahvata (Uvale Velika i Mala Črnika)
LOKACIJA V4 – UVALE MARASOVIĆA

Slika 3_15 Izvadak iz kartografskog prikaza 1. Korištenje i namjena prostora iz Prostornog plana uređenja Općine Karlobag s ucrtanom V4 lokacijom zahvata (Uvale Marasovka i Pečci)

Slika 3_16 Izvadak iz kartografskog prikaza. Uvjeti korištenja i zaštite prostora iz Prostornog plana uređenja Općine Karlobag s ucrtanom V4 lokacijom zahvata (Uvale Marasovka i Pečci)
ZAKLJUČAK:
Prostornim planom uređenja Općine Karlobag generalno su određene lokacije pogodne za marikulturu (ukupno devet lokacija) te su na temelju generalno određenih lokacija odabrane dvije lokacije za uspostavu uzgajališta:

- jedna lokacija (V4 - Uvale Marasovića) na području koje je prostornim planom navedeno kao "Uvale Marasovića i uvale Pećci (2)",
- jedna lokacija (V3 - Uvala Velika Črnika) na području koje je prostornim planom navedeno kao "Uvale Kralić do uvale Drvarica (3)"

Nadalje, planirana uzgajališta zadovoljavaju druge uvjete propisane Planom - minimalna udaljenost do zona izgradnje na kopnu od 1 000 m te minimalna dubina mora od 30 m, stoga je planirani zahvat uspostave uzgajališta na lokacijama V3 – Uvala Velika Črnika i V4 – Uvale Marasovića u skladu s Prostornim planom uređenja Općine Karlobag.
3.2 GELOŠKE I HIDROGELOŠKE ZNAČAJKE PROSTORA

3.2.1 Geološke značajke

Velebitski kanal je morski kanal uz planinu Velebit. Proteže se između otoka Krka, Prvića, Golog, Raba i Paga te kopna (Velebita) i sjeveroistočne obale Ravnih kotara. Širina kanala varira od desetak do manje od dva km. Dubine dna kanala u najvećem dijelu su između 60 i 80 m dok u području između otoka Raba i Jablanca premašuju 100 m.

U gradi obalnog pojasa i podmorja Velebitskog kanala sudjeluju naslage krede, paleogena i kvartara. Osnovna stijenska masa primorske padine Velebita je vapnenac, prema Osnovnoj geološkoj karti: listovi Rab, Molat i Gospić (Mamužić i sur., 1969; Mamužić i sur. 1973; Sokač i sur. 1974) kredne i tercijarne starosti (slika 3_17).

Slika 3_17 Osnovna geološka karta (M 1:100 000), list Rab L33-114 s označenom lokacijom V1

Lokacija V1 smještena je ispred obale izgrađene od paleogensko do neogenskih vapnenačkih breća s ulošćima pločastih vapnenaca i mikrobreća. Cement breća je kalcitni, najčešće sitnozrnat. Mjestimično je crvenkasti pigmentiran ili onečišćen glinovitim supstancom. Omjer cementa i fragmenta jako varira. S obzirom na paleoreljeft i razlomljenost ovih
naslaga, nije moguće točnije utvrditi njihovu debljinu, ali bi mogla biti i do 250 m (Mamužić i sur. 1973).

Slika 3_18 Osnovna geološka karta (M 1:100 000), list Silba L33-126 s označenom lokacijom V2

Lokacije V3 i V4 smještene su ispred obale izgrađene od vapnenačkih breča, konglomerata i vapnenaca gornje paleogenske starosti (slika 3_19). Te naslage su pretežno neuslojene, sive, sivo smeđe ili crvenkaste boje sa 91-98% CaCO₃. U njihov sustav ulaze vapnenačke breče s interkalacijama kalcilutita i vapnenackog konglomerata pretežno u obliku leća. Mjestimično u vezivu dolaze glinovito-limonitične primjese koje cement čine crvenkastim. Postanak ovih gornje paleogenskih breča vezan je za istaknuti reljef, jaku eroziju, pretežno kratak transport i brzu akumulaciju materijala (Sokač i sur., 1976).

Stupanj tektonske razlomljenosti Velebitskog masiva je vrlo visok, a Velebitskim kanalom ide trasa pretpostavljenog i vrlo značajnog Velebitskog rasjeda. Smatra se da je u površinskom dijelu to vertikalni rasjed, koji u dubljem dijelu prelazi u reverzni i podvlači se pod Velebit. Taj rasjed (ili rasjedna zona) odvaja dvije vrlo značajne geotektonske jedinice Adrijatik i Dinarik (Herak, 1986). Izrazita okršenost Velebita rezultat je njegove pretežno karbonatne građe, a usto je razlomljen uslijed jakih tektonskih pokreta. To je rezultiralo time da Velebit ne predstavlja hidrogeološku barijeru, već se veći dio podzemnih voda Like drenira kroz Velebit prema Velebitskom kanalu. Te podzemne vode izbijaju u Velebitskom kanalu kao brojne povremene ili stalne vrulje, a ponegdje i kao priobalni izvori. Važna geomorfološka
Studija utjecaja na okoliš

karakteristika primorske padine Velebita jesu tragovi površinske bujične erozije iako u znatno okršenim vodopropusnim vapnencima. Takvi, danas samo povremeno aktivni tokovi (bujice) modelirali su velebitsku primorsku padinu i uzrokovali raspored i izgled uvala. Važno je naglasiti da navedeni sustav dreniranja voda Velebita i zaobalja putem vrulja i priobalnih izvora u današnjim vremenima (i sadašnjim klimatskim prilikama) ne donosi značajnije količine čestičnog materijala koji bi se mogao istaložiti u moru. Uslijed klimatskih promjena očekuje se samo smanjenje količina oborina na tom području tako da se ne očekuje ni bitna promjena u donosu terigenog materijala u Velebitski kanal. Značajna iznimka tome su Velika i Mala Paklenica koje dreniraju i klastične stijenske komplekse pa su stvorile i deltne zaravni.
3.2.2 Inženjersko geološke značajke dna

Za potrebe ove studije na svim predviđenim lokacijama uzet je uzorak površinskog sedimenta gravitacijskim korerom Uwitec s cijevima od pleksiglasa promjera 90 mm. Uzorkovano je u obalnom dijelu na dubini od dvadesetak metara gdje počinje podmorska padina (V*-1) i na dubini od preko šezdeset metara (V*-2 površina i V*-3 10 cm dubine sedimenta) gdje će biti locirani kavezi (tablica 3_01). Lokacije uzorkovanja sedimenta prikazane su na slici 3_20.

Tablica 3_01 Lokacije uzorkovanja sedimenta

<table>
<thead>
<tr>
<th>oznaka</th>
<th>dubina sedimenta</th>
<th>Dubina</th>
<th>koordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1-1</td>
<td>0-2 cm</td>
<td>19 m</td>
<td>372360,0015 4958641,71</td>
</tr>
<tr>
<td>V1-2</td>
<td>0-2 cm</td>
<td>67 m</td>
<td>372130,3855 4958490,331</td>
</tr>
<tr>
<td>V1-3</td>
<td>10-12 cm</td>
<td></td>
<td>372130,3855 4958490,331</td>
</tr>
<tr>
<td>V2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2-1</td>
<td>0-2 cm</td>
<td>21 m</td>
<td>377299,7414 4944678,161</td>
</tr>
<tr>
<td>V2-2</td>
<td>0-2 cm</td>
<td>67 m</td>
<td>377105,4581 4944666,951</td>
</tr>
<tr>
<td>V2-3</td>
<td>10-12 cm</td>
<td></td>
<td>377105,4581 4944666,951</td>
</tr>
<tr>
<td>V3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3-1</td>
<td>0-2 cm</td>
<td>20 m</td>
<td>389854,7068 4929290,843</td>
</tr>
<tr>
<td>V3-2</td>
<td>0-2 cm</td>
<td>71 m</td>
<td>389687,759 4929088,985</td>
</tr>
<tr>
<td>V3-3</td>
<td>10-12 cm</td>
<td></td>
<td>389687,759 4929088,985</td>
</tr>
<tr>
<td>V4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4-1</td>
<td>0-2 cm</td>
<td>19 m</td>
<td>393487,6929 4924982,867</td>
</tr>
<tr>
<td>V4-2</td>
<td>0-2 cm</td>
<td>68 m</td>
<td>393346,111 4924749,321</td>
</tr>
<tr>
<td>V4-3</td>
<td>10-12 cm</td>
<td></td>
<td>393346,111 4924749,321</td>
</tr>
</tbody>
</table>

Nakon uzorkovanja, iz sedimentnih kolona izdvojeni su poduzorci površinskog sedimenta i sedimenta s dubine od 10 cm (tablica 3_01). Sediment je osušen liofiliziranjem u morskoj postaji Instituta Ruđer Bošković na Martinskoj, a zatim je raspodjela veličine čestica u poduzorcima sedimenta određena metodom laserske difrakcije na instrumentu LS 13320 (Beckman Coulter, SAD) u Institutu Ruđer Bošković u Zagrebu.

Uzorci su prethodno prosijani kroz sito promjera otvora 2 mm i dispergirani u deioniziranoj vodi. Neposredno prije mjerenja uzorci su tretirani u ultrazvučnoj kupeli (5 min). Zastupljenost pojedinih sedimentnih frakcija određena je prema Wentworthovoj skali (1922) modificiranoj pomakom granice glina-silt na 2 µm.
Slika 3_20 Topografska karta s označenom lokacijom budućih uzgajališta te s označenim lokacijama uzorkovanja sedimenata.

Dobiveni rezultati granulometrijske analize sedimenata za sve četiri lokacije i njihove pod-llokacije prikazani su u Tablici 3_02.
Za svaku lokaciju izrađene su i krivulje granulometrijske raspodele (slike 3_21 do 3_32).
Studija utjecaja na okoliš

Slika 3_24 Granulometrijska raspodjela na lokaciji V2-1

Slika 3_25 Granulometrijska raspodjela na lokaciji V2-2

Slika 3_26 Granulometrijska raspodjela na lokaciji V2-3
Slika 3_27 Granulometrijska raspodjela na lokaciji V3-1

Slika 3_28 Granulometrijska raspodjela na lokaciji V3-2

Slika 3_29 Granulometrijska raspodjela na lokaciji V3-3
Slika 3.30 Granulometrijska raspodjela na lokaciji V4-1

Slika 3.31 Granulometrijska raspodjela na lokaciji V4-2

Slika 3.32 Granulometrijska raspodjela na lokaciji V4-3
Studija utjecaja na okoliš

Prethodni rezultati granulometrijskih analiza sedimenta te pregled lokacija, upućuju da debljina recentnog, nekonsolidiranog sedimenta u području Velebitskog kanala na lokacijama V1-V4 nije zanemariva te se može pretpostaviti da se debljina nekonsolidiranog sedimenta povećava prema središtu kanala. Relevantan element za razumijevanje sedimentacijskih i inženjersko geoloških značajki morskoga dana i uvjeta sidrenja je taj da se recentni sediment počeo taložiti u ovom području morskog dna u relativno nedavnoj geološkoj prošlosti. Naime, prije 20 000 godina morska razina bila je oko 120 m niža od današnje te je područje sadašnjeg morskoga dna bilo kopno i na njemu su prevladavali procesi okršavanja i erozije. Taloženja je bilo eventualno u nekim lokalnim depresijama. Brzim globalnim porastom morske razine nakon zadnjeg ledenog doba došlo je do značajnog porasta razine mora. U Velebitskom kanalu je negdje prije otprilike 10 000 godina počelo taloženje sedimenata na morsko dno.

Međutim, kako donos terigenog materijala s kopna u Velebitski kanal uslijed carbonatne obale i nepostojanje većih površinskih vodotoka nije bio značajan, brzina nakupljanja sedimenta je također bila mala te je stoga i debljina recentnog nekonsolidiranog sedimenta relativno malena. U takvim uvjetima taloženje biogenih ostataka (ostataka ljuštura, skeleta i školjki organizama koji žive u moru) je značajno. Osim toga i procesi trošenja carbonatne obale djelovanjem valova, ali i sinergističkim djelovanjem endolitskih organizama koji se ubušuju u stijene obalnog područja, mogu dati određenu količinu materijala koji se taloži na morskom dnu. Djelovanjem valova do dubine valne baze te djelovanjem pridnenih struja dolazi do raspoređivanja i preraspoređivanja sedimenata. Iznad valne baze (za koju se u ovom prostoru može procijeniti da je na oko 10-15 m) dolazi do ispiranja sitnih čestica iz sedimenta, dok u dubljem dijelu dolazi do njihova nakupljanja. Naravno, ispod valne baze možemo naći i i krupnije biogene ostatke nastale in situ. Dodatni element koji može utjecati na granulometrijski sastav sedimenata je i proces bioturbacije tj. miješanja površinskog dijela sedimenta pomoću organizama koji žive u sedimentu. Zaključno, što se tiče inženjersko geoloških karakteristika dna na lokacijama predviđenima za uzgajališta, odnosno mogućnosti sidrenja kevaza na lokaciji, može se zaključiti da su povoljni, da će betonski blok ili u povoljnijem slučaju sidro-plug značajno utonuti u sediment te time i otežati njihovo pomicanje zbog tangencijalnih potisaka.
3.3 HIDROLOŠKE ZNAČAJKE

Hidrogeološki, obalni dio promatranog područja je izgrađen od uglavnom dobro propusnih karbonata (slika 3_33). Na promatranom području nema površinskih tokova, osim povremenih bujičnih tokova u jarugama nakon obilnijih oborina. Oborine koje ne otječu površinski prema moru, prodiru kroz pukotine u podzemlje i u podzemlju se dreniraju u more putem dodira obalnog vodonosnika i mora. Zapravo, na promatranom području morska voda prodiru u kopno i tvori takozvani podzemni estuarij (Moore, 1999). Podzemna voda na promatranom području Velebita je u stvari more koje popunjava pukotinski sustav podzemnog estuarija i samo o količini dotoka slatke vode ovisi salinitet takve podzemne vode. Očekivana razina vodnog lica bi bila u razini mora i pod utjecajem morskih mijena i dinamike mora.

Slika 3_33 Karbonatna obala
3.3.1 Pregled stanja vodnih tijela

Lokacije uzgajališta smještene su duž Velebitskog kanala. Najsjevernija lokacija uzgajališta V1 smještena između uvala Trsine i Tvrduša nalazi se unutar priobalnog vodnog tijela O423-VIK, a lokacije ostalih triju uzgajališta (između uvala Bilančevica i Bočarije V2, između uvala Velika i Mala Črnika V3 te između uvala Marasovka i Pećci V4) nalaze se unutar priobalnog vodnog tijela O422-KVV (slika 3_34).

Slika 3_34. Karta priobalnih vodnih tijela s ucrtanim lokacijama zahvata (Izvor: Hrvatske vode)
Priobalno vodno tijelo O423-VIK obuhvaća Vinodolski kanal i rasprostire se na površini od 455,41 km², a priobalno vodno tijelo O422-KVV obuhvaća dio Kvarnerića i dio Velebitskog kanala i rasprostire se na površini od 496,02 km². Prema podacima Hrvatskih voda, priobalno vodno tijelo O423-VIK je u umjerenom ekološkom stanju te u dobrom kemijskom stanju, dok je priobalno vodno tijelo O422-KVV u dobrom ekološkom stanju te u vrlo dobrom kemijskom stanju (tablica 3_03).

Tablica 3_03 Stanje priobalnih vodnih tijela

<table>
<thead>
<tr>
<th>VODNO TIJELO</th>
<th>Ekološko</th>
<th>Kemijsko</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>O423-VIK</td>
<td>umjereno stanje</td>
<td>dobro stanje</td>
<td>umjereno stanje</td>
</tr>
<tr>
<td>O422-KVV</td>
<td>dobro stanje</td>
<td>Vrlo dobro stanje</td>
<td>dobro stanje</td>
</tr>
</tbody>
</table>

Ocjena stanja priobalnih vodnih tijela O423-VIK i O422-KVV prema pojedinačnim pokazateljima prikazana je u tablici 3_04.

Tablica 3_04 Ocjena stanja priobalnih vodnih tijela O423-VIK i O422-KVV prema pojedinačnim pokazateljima

<table>
<thead>
<tr>
<th>Pokazatelji</th>
<th>O423-VIK</th>
<th>O422-KVV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ocjena stanja</td>
<td>Ocjena stanja</td>
</tr>
<tr>
<td>Fizikalno-kemijski</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prozirnost</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Otopljeni kisik u površinskom sloju</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Otopljeni kisik u pridnem sloju</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Ukupni anorganski dušik</td>
<td>dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Ortosfati</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Ukupni fosfor</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Biološki pokazatelji</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klorofil a</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Fitoplankton</td>
<td>dobro stanje</td>
<td>dobro stanje</td>
</tr>
<tr>
<td>Makroalge</td>
<td>umjereno stanje</td>
<td>-</td>
</tr>
<tr>
<td>Bentički beskralježnjaci</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Morske cvjetnice</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Biološko stanje</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>umjereno stanje</td>
<td>dobro stanje</td>
</tr>
<tr>
<td>Specifične onečišćujuće tvari</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
<tr>
<td>Hidomorfološko stanje</td>
<td>vrlo dobro stanje</td>
<td>vrlo dobro stanje</td>
</tr>
</tbody>
</table>
Studija utjecaja na okoliš

Postoje i brojni priobalni izvori koji su, zbog otvorenog kontakta s morem, praktički redovito zaslanjeni, tako da na tom vrlo dugom području nema niti jednog kaptiranog priobalnog izvoda.. Među njima najznačajnije je izvorište Bačvica. Osamdesetih godina prošlog stoljeća kaptirano i podvodnim cjevovodom povezano s vodoopskrbnim sustavom otoka Paga. No, zbog velikih prodora mora u vodozahvat neposredno lociran uz morsku obalu, unatoč dodatno provedenih injektiranja, izvorište je nakon nekoliko godina eksploatacije napušteno 1990. godine (Rubinić i sur., 2007).

Voda s ovog izvora se direktno crpi pomoću dvije crpke te se diže na visinu od 250 m do transportnog cjevovoda i u cjevovodu se miješa s vodom iz vodozahvata Hrmotine. Voda se dodatno ne obrađuje nego samo dezinficira s natrij- hipokloritom.

Kakvoća neobradene vode na izvorištu Bačvice je vrlo dobra, osim povremenih prekoraka MDK vrijednosti klorida i elektrovodljivosti zbog velikog utjecaja mora na izvor zbog njegovog geografskog položaja. Povremeno se pojavljuje mikrobiološko onečišćenje što je inače karakteristika krških izvora kao što je ovaj (Mihovilović i sur., 2019).

3.3.2 Zone sanitarne zaštite izvorišta

Prema dostupnim podacima na predmetnoj lokaciji i njezinom neposrednom području nema pojave stalnih vodotoka. Predmetni zahvat se nalazi izvan postojećih zona sanitarne zaštite izvorišta (slika 3_35). Zone sanitarne zaštite izvorišta Bačvice su u Privitku studije.
Slika 3_35 Sanitarna zaštitna izvorišta
3.3.3 Osjetljiva područja na području zahvata

Temeljem Odluke o određivanju osjetljivih područja („Narodne novine”, broj 79/2022) predmetni zahvat se ne nalazi na osjetljivom području (slika 3_36).

Slika 3_36 Osjetljiva područja RH (NN 79/2022)
3.3.4 Ranjiva područja na području zahvata

Prema Odluci o određivanju ranjivih područja Republike Hrvatske ("Narodne novine", broj 130/12) predmetni zahvat se ne nalazi na ranjivom području (slika 3_37).

Slika 3_37 Ranjiva područja RH (NN 130/12)
3.3.5 Branjena područja na području zahvata

Prema Glavnom provedbenom planu obrane od poplava (ožujak, 2018.) lokacije zahvata nisu obuhvaćene u okviru branjenih područja (slika 3_38).

Slika 3_38 Branjena područja RH
3.4 STANJE MORSKOG OKOLIŠA

3.4.1 Sediment

3.4.1.1 Redoks potencijal u sediment

U svakoj jezgri je u prvih 10 cm sedimenta instrumentom Mettler MP 120 izmjerjen redoks potencijal (slika 3_39). Dobiveni podatci prikazani su u Tablici 3_05.

Slika 3_39 Određivanje redoks potencijala u prvih 10 cm sedimenta

Tablica 3_05 Redoks potencijal (mV) u prvih 10 cm sedimenta na istraživanim lokacijama

<table>
<thead>
<tr>
<th>cm</th>
<th>V1-1</th>
<th>V1-2</th>
<th>V2-1</th>
<th>V2-2</th>
<th>V3-1</th>
<th>V3-2</th>
<th>V4-1</th>
<th>V4-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>47</td>
<td>23</td>
<td>22</td>
<td>1</td>
<td>52</td>
<td>2</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>-5</td>
<td>2</td>
<td>-10</td>
<td>45</td>
<td>-2</td>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-17</td>
<td>-7</td>
<td>-11</td>
<td>17</td>
<td>-7</td>
<td>-2</td>
<td>-10</td>
</tr>
<tr>
<td>3</td>
<td>-2</td>
<td>-19</td>
<td>-8</td>
<td>-21</td>
<td>1</td>
<td>-10</td>
<td>-8</td>
<td>-7</td>
</tr>
<tr>
<td>4</td>
<td>-5</td>
<td>-22</td>
<td>-11</td>
<td>-17</td>
<td>-5</td>
<td>-11</td>
<td>-24</td>
<td>-20</td>
</tr>
<tr>
<td>5</td>
<td>-7</td>
<td>-27</td>
<td>-17</td>
<td>-22</td>
<td>-7</td>
<td>-16</td>
<td>-31</td>
<td>-16</td>
</tr>
<tr>
<td>7</td>
<td>-18</td>
<td>-33</td>
<td>-20</td>
<td>-32</td>
<td>-13</td>
<td>-21</td>
<td>-27</td>
<td>-31</td>
</tr>
<tr>
<td>8</td>
<td>-19</td>
<td>-37</td>
<td>-20</td>
<td>-37</td>
<td>-20</td>
<td>-19</td>
<td>-36</td>
<td>-33</td>
</tr>
<tr>
<td>11</td>
<td>-33</td>
<td>-41</td>
<td>-25</td>
<td>-45</td>
<td>-22</td>
<td>-27</td>
<td>-42</td>
<td>-47</td>
</tr>
</tbody>
</table>
3.4.1.2 Elementni sastav sedimenta

Uzorkovanje sedimenta obavljeno je gravitacijskim korerom UWITEC (slika 3_40) s cijevima od pleksiglasa promjera 90 mm na osam lokacija (slika 3_41). Na svakoj lokaciji je uzet jedan uzorak sedimenta u obalnom dijelu na dubinama od otprilike 25 m i označen je „-1“ i drugi na lokaciji kaveza i označen je s „-2“ (slika 3_41). Uzorak označen s „-3“ je iz sloja od 10 do 12 cm s lokacije na početku prvih kaveza.

Uzorci sedimenta su zamrznuti na -20 °C te su osušeni u liofilizatoru. Nakon toga je dio osušenog uzorka (0,2 g) razoren smjesom triju kiselina visoke čistoće (perklornom (HClO₄), dušičnom (HNO₃) i fluorovodičnom (HF)) tzv. postupkom „hot-plate“. Koncentracije metala u otopljenom uzorku određene su na instrumentu HR ICP-MS u Zavodu za istraživanje mora i okoliša, Instituta Ruđer Bošković u Zagrebu.

Slika 3_40 Uzorkovanje sedimenta gravitacijskim korerom Uwitec.
Slika 3.41 Topografska karta s označenom lokacijom budućih uzgajališta s označenim lokacijama uzorkovanja sedimenata

Dobiveni maseni udio elemenata prikazan je u tablicama 3.06, 3.07 i 3.09. Iz masenog udjela makroelemenata (tablica 3.06) možemo pretpostaviti porijeklo sedimenata i udio terigene komponente u njima.
Studija utjecaja na okoliš

Iz masenog udjela toksičnih metala (tablica 3_07) možemo ustanoviti prethodni antropogeni utjecaj na svakoj lokaciji i procijeniti prijetnju živom svijetu dna, ali i ostatku vodnog okoliša.

Tablica 3_06 Maseni udio (µg/g) makroelemenata u sedimentu

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>Ca</th>
<th>Al</th>
<th>Li</th>
<th>Na</th>
<th>Mg</th>
<th>Fe</th>
<th>Mn</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1-1</td>
<td>791</td>
<td>36528</td>
<td>112</td>
<td>2,62</td>
<td>4079</td>
<td>3486</td>
<td>405</td>
<td>53,3</td>
<td>18,2</td>
</tr>
<tr>
<td>V1-2</td>
<td>3792</td>
<td>22830</td>
<td>973</td>
<td>7,94</td>
<td>5195</td>
<td>4908</td>
<td>201</td>
<td>206</td>
<td>28,1</td>
</tr>
<tr>
<td>V1-3</td>
<td>3307</td>
<td>27685</td>
<td>1373</td>
<td>6,57</td>
<td>3267</td>
<td>4789</td>
<td>1067</td>
<td>136</td>
<td>69,9</td>
</tr>
<tr>
<td>V2-1</td>
<td>677</td>
<td>33623</td>
<td>70,3</td>
<td>1,95</td>
<td>3453</td>
<td>3288</td>
<td>378</td>
<td>55,1</td>
<td>6,66</td>
</tr>
<tr>
<td>V2-2</td>
<td>3241</td>
<td>10974</td>
<td>1218</td>
<td>6,15</td>
<td>4496</td>
<td>2638</td>
<td>1151</td>
<td>120</td>
<td>168</td>
</tr>
<tr>
<td>V2-3</td>
<td>3418</td>
<td>13665</td>
<td>1114</td>
<td>6,60</td>
<td>3980</td>
<td>2856</td>
<td>1195</td>
<td>123</td>
<td>129</td>
</tr>
<tr>
<td>V3-1</td>
<td>1384</td>
<td>28592</td>
<td>390</td>
<td>4,26</td>
<td>5352</td>
<td>5064</td>
<td>1213</td>
<td>107</td>
<td>108</td>
</tr>
<tr>
<td>V3-2</td>
<td>4117</td>
<td>8039</td>
<td>1941</td>
<td>6,35</td>
<td>6973</td>
<td>1202</td>
<td>879</td>
<td>165</td>
<td>109</td>
</tr>
<tr>
<td>V3-3</td>
<td>5523</td>
<td>11223</td>
<td>2175</td>
<td>8,88</td>
<td>5414</td>
<td>2077</td>
<td>937</td>
<td>154</td>
<td>78</td>
</tr>
<tr>
<td>V4-1</td>
<td>1676</td>
<td>42069</td>
<td>560</td>
<td>4,81</td>
<td>5769</td>
<td>6157</td>
<td>739</td>
<td>174</td>
<td>68</td>
</tr>
<tr>
<td>V4-2</td>
<td>3327</td>
<td>8252</td>
<td>794</td>
<td>4,48</td>
<td>6386</td>
<td>1164</td>
<td>80,7</td>
<td>89,8</td>
<td>4,63</td>
</tr>
<tr>
<td>V4-3</td>
<td>4912</td>
<td>9353</td>
<td>2164</td>
<td>7,27</td>
<td>4694</td>
<td>1577</td>
<td>1853</td>
<td>129</td>
<td>169</td>
</tr>
</tbody>
</table>

Kako u hrvatskoj zakonskoj regulativi ne postoji uredba o dozvoljenim masenim udjelima toksičnih metala u sedimentu, procjenu rizika od štetnog djelovanja sedimenta na organizme morskog dna možemo napraviti uspoređujući masene udjele elemenata dobivene kemijskom analizom s podacima iz literature o toksičnom djelovanju tvari na živa bića u sedimentu. U tu svrhu su razvijeni SQGs (sediment quality guidelines – smjernice za kvalitetu sedimenta), bazirani na empirijskim analizama, usporedbom kemijskih i bioloških podataka za veliki broj potencijalno toksičnih tvari. Posebne smjernice razvijene su za morske ekosustave. Smjernice korištene u svrhu procjene ekotoksikološkog značaja koncentracija elemenata u sedimentu u ovoj studiji su razvijene od NOAA (National Oceanic and Atmospheric Administration, SAD) i ANZECC (Australian and New Zealand guidelines for fresh and marine water quality)(Sediment Quality Guidelines, SQG; Burton, 2002):

- ERL ("effect range low") – za vrijednosti ispod ERL toksični efekti se rijetko pojavljuju
- ERM ("effect range median") - za vrijednosti iznad ERM toksični efekti su vjerojatni.

Na temelju međunarodnih smjernica za kvalitetu sedimenta (tablica 3_08) možemo ustvrditi da sediment istraživanog područja sa sve četiri lokacije nije bio pod značajnijim antropogenim utjecajem te da su maseni udjeli metala u sedimentu niski.
Studija utjecaja na okoliš

Tablica 3_07 Maseni udio (μg/g) toksičnih metala u sedimentu

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Cu</th>
<th>Zn</th>
<th>Co</th>
<th>Ni</th>
<th>As</th>
<th>Sn</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1-1</td>
<td>0.042</td>
<td>1,058</td>
<td>1,403</td>
<td>9,592</td>
<td>1,070</td>
<td>3,913</td>
<td>0,851</td>
<td>0,150</td>
<td>2,025</td>
</tr>
<tr>
<td>V1-2</td>
<td>0,060</td>
<td>0,225</td>
<td>4,360</td>
<td>24,423</td>
<td>4,519</td>
<td>15,730</td>
<td>0,069</td>
<td>0,007</td>
<td>3,211</td>
</tr>
<tr>
<td>V1-3</td>
<td>0,069</td>
<td>0,534</td>
<td>3,806</td>
<td>22,192</td>
<td>3,829</td>
<td>12,636</td>
<td>0,131</td>
<td>0,090</td>
<td>7,224</td>
</tr>
<tr>
<td>V2-1</td>
<td>0,035</td>
<td>0,977</td>
<td>1,134</td>
<td>11,990</td>
<td>0,757</td>
<td>2,870</td>
<td>0,990</td>
<td>0,103</td>
<td>1,661</td>
</tr>
<tr>
<td>V2-2</td>
<td>0,052</td>
<td>0,251</td>
<td>3,934</td>
<td>27,868</td>
<td>3,343</td>
<td>13,445</td>
<td>0,152</td>
<td>0,126</td>
<td>8,786</td>
</tr>
<tr>
<td>V2-3</td>
<td>0,053</td>
<td>0,312</td>
<td>4,071</td>
<td>42,491</td>
<td>3,730</td>
<td>13,879</td>
<td>0,145</td>
<td>0,178</td>
<td>8,838</td>
</tr>
<tr>
<td>V3-1</td>
<td>0,052</td>
<td>0,957</td>
<td>2,372</td>
<td>31,144</td>
<td>1,682</td>
<td>7,663</td>
<td>3,521</td>
<td>0,565</td>
<td>4,167</td>
</tr>
<tr>
<td>V3-2</td>
<td>0,069</td>
<td>0,063</td>
<td>4,935</td>
<td>29,711</td>
<td>4,480</td>
<td>18,969</td>
<td>0,041</td>
<td>0,026</td>
<td>8,369</td>
</tr>
<tr>
<td>V3-3</td>
<td>0,084</td>
<td>0,171</td>
<td>5,796</td>
<td>39,455</td>
<td>5,750</td>
<td>24,722</td>
<td>0,044</td>
<td>0,018</td>
<td>11,134</td>
</tr>
<tr>
<td>V4-1</td>
<td>0,058</td>
<td>0,969</td>
<td>2,389</td>
<td>34,276</td>
<td>2,037</td>
<td>8,161</td>
<td>0,785</td>
<td>0,080</td>
<td>3,714</td>
</tr>
<tr>
<td>V4-2</td>
<td>0,054</td>
<td>0,012</td>
<td>1,948</td>
<td>24,288</td>
<td>3,900</td>
<td>14,056</td>
<td>0,020</td>
<td>0,003</td>
<td>1,888</td>
</tr>
<tr>
<td>V4-3</td>
<td>0,089</td>
<td>0,254</td>
<td>5,751</td>
<td>43,404</td>
<td>6,136</td>
<td>24,312</td>
<td>0,058</td>
<td>0,073</td>
<td>14,583</td>
</tr>
</tbody>
</table>

Tablica 3_08 Smjernice kvalitete sedimenta (Burton, 2002)

<table>
<thead>
<tr>
<th></th>
<th>Cd</th>
<th>Pb</th>
<th>Cu</th>
<th>Zn</th>
<th>Co</th>
<th>Ni</th>
<th>As</th>
<th>Sn</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERL</td>
<td>1,2</td>
<td>46,7</td>
<td>34</td>
<td>150</td>
<td>-</td>
<td>20,9</td>
<td>33</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>ERM</td>
<td>9,6</td>
<td>218,0</td>
<td>270</td>
<td>410</td>
<td>-</td>
<td>51,6</td>
<td>85</td>
<td>-</td>
<td>145</td>
</tr>
</tbody>
</table>

Izmjereni maseni udjeli metala u svim uzorcima sedimenta ne predstavljaju prijetnju za živi svijet vodenog sustava Velebitskog kanala, te se ne očekuju toksični efekti.

U tablici 3_09 prikazani su maseni udjeli mikro i ostalih mjerenih elemenata koja nam mogu pružiti dodatne informacije o postanku sedimenta i utjecajima pod kojim je bio u prošlosti.

Tablica 3_09 Maseni udjeli (μg/g) mikro i ostalih mjerenih elemenata

<table>
<thead>
<tr>
<th></th>
<th>Rb</th>
<th>U</th>
<th>Cs</th>
<th>Ti</th>
<th>V</th>
<th>Ba</th>
<th>Sb</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1-1</td>
<td>3,844</td>
<td>0,468</td>
<td>0,336</td>
<td>0,057</td>
<td>2,752</td>
<td>4,163</td>
<td>0,195</td>
<td>499,9</td>
</tr>
<tr>
<td>V1-2</td>
<td>7,101</td>
<td>0,799</td>
<td>0,179</td>
<td>0,142</td>
<td>0,084</td>
<td>1,343</td>
<td>0,040</td>
<td>113,3</td>
</tr>
<tr>
<td>V1-3</td>
<td>8,906</td>
<td>0,762</td>
<td>0,351</td>
<td>0,116</td>
<td>1,077</td>
<td>2,247</td>
<td>0,086</td>
<td>133,8</td>
</tr>
<tr>
<td>V2-1</td>
<td>3,004</td>
<td>0,296</td>
<td>0,262</td>
<td>0,043</td>
<td>2,627</td>
<td>8,844</td>
<td>0,111</td>
<td>408,7</td>
</tr>
<tr>
<td>V2-2</td>
<td>6,196</td>
<td>0,845</td>
<td>0,151</td>
<td>0,118</td>
<td>2,314</td>
<td>0,817</td>
<td>0,094</td>
<td>51,0</td>
</tr>
<tr>
<td>V2-3</td>
<td>6,905</td>
<td>0,957</td>
<td>0,196</td>
<td>0,129</td>
<td>1,859</td>
<td>1,068</td>
<td>0,102</td>
<td>70,2</td>
</tr>
<tr>
<td>V3-1</td>
<td>6,957</td>
<td>0,891</td>
<td>0,538</td>
<td>0,107</td>
<td>8,836</td>
<td>3,828</td>
<td>0,157</td>
<td>313,5</td>
</tr>
<tr>
<td>V3-2</td>
<td>5,284</td>
<td>0,963</td>
<td>0,128</td>
<td>0,132</td>
<td>0,864</td>
<td>0,655</td>
<td>0,772</td>
<td>30,5</td>
</tr>
<tr>
<td>V3-3</td>
<td>5,808</td>
<td>1,325</td>
<td>0,127</td>
<td>0,183</td>
<td>0,166</td>
<td>1,189</td>
<td>0,066</td>
<td>39,5</td>
</tr>
<tr>
<td>V4-1</td>
<td>7,509</td>
<td>0,623</td>
<td>0,546</td>
<td>0,085</td>
<td>2,409</td>
<td>3,502</td>
<td>0,060</td>
<td>459,5</td>
</tr>
<tr>
<td>V4-2</td>
<td>4,426</td>
<td>0,587</td>
<td>0,076</td>
<td>0,115</td>
<td>0,091</td>
<td>1,043</td>
<td>0,014</td>
<td>46,2</td>
</tr>
<tr>
<td>V4-3</td>
<td>5,292</td>
<td>1,243</td>
<td>0,092</td>
<td>0,173</td>
<td>1,383</td>
<td>1,388</td>
<td>0,076</td>
<td>35,6</td>
</tr>
</tbody>
</table>
3.4.1.3 Organski ugljik, ukupni dušik i ukupni fosfor

Na svim lokacijama (V1, V2, V3 i V4) analiza kemijskog sastava sedimenta uključivala je sljedeće parametre: ukupni fosfor (mg P/kg), ukupni dušik (%) i ukupni organski ugljik (%). Ukupni organski ugljik (TOC) odnosi se na količinu organske tvari unutar sedimenta, dok su hranjive tvari sedimenta određene kao ukupni dušik (TN) i ukupni fosfor (TP). Organski ugljik u morskom sedimentu pojavljuje se kao rezultat metaboličkih procesa organizama koji žive u stupcu mora (mrtvi fitoplankton i zooplankton te fekalni peleti zooplantoona), na i u sedimentu i kao ugljik sadržan u biogenim karbonatnim mineralima (kalcit i aragonit). Masene udjele organskog ugljika, ukupnog dušika i ukupnog fosfora određene su slijedećim metodama:

- ukupni organski ugljik – na aparatu TOC Shimadzu prema uputama proizvođača za kruti uzorak;
- organski dušik – određivanje po Kjeldahl metodi;
- ukupni fosfor – razaranje u mikrovalnoj s dušičnom kiselinom i razvijanje boje s amonijevim molibdatom.

Dobivene vrijednosti prikazane su u tablici 3_10.

<table>
<thead>
<tr>
<th></th>
<th>C (%)</th>
<th>N (%)</th>
<th>P (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1-1</td>
<td>< 0,1</td>
<td>0,087</td>
<td>177</td>
</tr>
<tr>
<td>V1-2</td>
<td>< 0,1</td>
<td>0,091</td>
<td>145</td>
</tr>
<tr>
<td>V1-3</td>
<td>0,3</td>
<td>0,095</td>
<td>166</td>
</tr>
<tr>
<td>V2-1</td>
<td>< 0,1</td>
<td>0,079</td>
<td>202</td>
</tr>
<tr>
<td>V2-2</td>
<td>< 0,1</td>
<td>0,091</td>
<td>167</td>
</tr>
<tr>
<td>V2-3</td>
<td>0,7</td>
<td>0,088</td>
<td>195</td>
</tr>
<tr>
<td>V3-1</td>
<td>< 0,1</td>
<td>0,102</td>
<td>214</td>
</tr>
<tr>
<td>V3-2</td>
<td>0,3</td>
<td>0,087</td>
<td>222</td>
</tr>
<tr>
<td>V3-3</td>
<td>< 0,1</td>
<td>0,112</td>
<td>185</td>
</tr>
<tr>
<td>V4-1</td>
<td>0,7</td>
<td>0,105</td>
<td>201</td>
</tr>
<tr>
<td>V4-2</td>
<td>0,3</td>
<td>0,117</td>
<td>177</td>
</tr>
<tr>
<td>V4-3</td>
<td>0,4</td>
<td>0,089</td>
<td>187</td>
</tr>
</tbody>
</table>

Kao što je vidljivo iz tablice 3_10, na istraživanim lokacijama udio organskog ugljika se kretao u rasponu od <0,1% do 0,7%, dok je istovremeno udio ukupnog dušika varirao u rasponu od 0,087 do 0,117%. Sadržaj organskog ugljika i ukupnog dušika na mjernim lokacijama je u rasponu vrijednosti koje su određene za sediment priobalnog područja.

3.4.2 **Vodeni stupac**

3.4.2.1 **Hranjive soli**

Koncentracije hranjivih soli (ortofosfata, amonija, nitrita, nitrata i silikata) određene su u laboratoriju na morskoj postaji Martinska Instituta Ruđer Bošković iz Zagreba. Sva mjerenja obavljena su na spektrofotometru (Analytikjena SPECORD 200) korištenjem kiveta od 1 cm. Sve korištene kemikalije su p.a. čistoće.

Određivanje ortofosfata

Određivanje reaktivnog fosfora temelji se na metodi koju su predložili Strickland i Parsons (1968). Uzorak reagira s kompozitnim reagensom koji sadrži amonijev molibdat, askorbinsku kiselinu i kalijev antimonil-tartarat. Rezultirajući kompleks reduciran je *in situ* kako bi se dobila otopina plave boje, čija se apsorbancija mjeri spektrofotometrijski na valnoj dužini od 889 nm.

Reagensi:
- Amonijev heptamolibdat tetrahidrat (NH₄)₆Mo₇O₄₀·4H₂O
- Sulfatna kiselina (H₂SO₄)
- Askorbinska kiselina (C₆H₈O₆)
- Antimon kalijev tartarat (C₈H₁₀K₂O₁₅Sb₂)
- Standardna otopina fosfata (KH₂PO₄)

Postupak:

Priprema kompozitnog reagensa koja se dobije miješanjem amonijevog heptamolibdата tetrahidrata, sulfatne kiseline, askorbinske kiseline i antimon kalijevog tartarat a u omjeru 1 : 2,5 : 1 : 0,5. Iz standardne otopine ortofosfata razrjeđenjem se napravi 4 do 5 standardnih koncentracija koje odgovaraju rasponu koncentracija očekivanih u uzorcima. Sam postupak određivanja ortofosfata sastoji se u mjerenju najmanje dvije slijepe probe, standardnih otopina i uzoraka gdje se na 4,5 mL slijepe probe, standardnih otopina i uzoraka doda 4,5 mL svježe pripremljenog kompozitnog reagensa.
Određivanje amonija
Određivanje amonija temelji se na mjerenju absorbancije indofenola dobivenog reakcijom kod visokih pH između amonija, fenola i hipoklorita na valnoj dužini od 635 nm.
Reagensi:
Fenol (C₆H₅OH)
Natrijev nitroprusid (C₃FeN₆Na₂O)
Natrijev diklorizocijanurat dihidrata (C₃Cl₂N₃NaO₃*2H₂O)
Natrijev citrat dihidrata (C₂H₃NaO₂*2H₂O)
Natrijev hidroksid (NaOH)
Klorovodična kiselina (HCl)
Etol (EtOH)
Natrij hipoklorit (NaClO)
Amonij sulfat ((NH₄)₂SO₄)
Postupak:
Prije dodatka reagensa, u uzorak se dodaje otopina fenola nakon čega se dodaje kompozitni reagens sastavljen od natrijevog citrata i natrijevog diklorizocijanurat dihidrata u omjeru 1 : 1. Iz standardne otopine amonija razrjeđenjem se napravi 4 do 5 standardnih koncentracija koje odgovaraju rasponu koncentracija očekivanih u uzorcima. Sam postupak određivanja amonija sastoji se u mjerenju najmanje dvije slijepe probe, standardnih otopina i uzoraka.

Određivanje nitrata
Metoda za određivanje bazira se na redukciji nitrata do nitrita pomoću V(III) gdje nastali nitrit reagira s Greiss reagensom (smjesa N-(1-naftil)etilendiamin dihidroklorid s sulfanil amida). Absorbancija nastalog kompleksa mjeri se na valnoj dužini od 540 nm.
Reagensi:
Kloridna kiselina (HCl)
Vanadij (III) klorid (VCl₃)
N-(1-naftil)etilendiamin dihidroklorid (C₁₀H₇NHCH₂CH₂NH₂*2HCl)
Sulfanil amid (C₆H₅N₂O₂S)
Natrij nitrat (NaNO₃)
Postupak:
Prije određivanja nitrata priprema se kompozitni reagens otapanjem soli vanadij (III) klorida u razrijeđenoj otopinu HCl uz dodatak sulfanil amida i N-(1-naftil) etilendiamin dihidroklorida. Iz standardne otopine nitrata razrjeđenjem se napravi 4 do 5 standardnih koncentracija koje odgovaraju rasponu koncentracija očekivanih u uzorcima. Sam postupak određivanja nitrata sastoji se u mjerenju najmanje dvije slijepe probe, standardnih otopina i uzoraka.

Određivanje nitrita
Postupak određivanja nitrita temelji se na reakciji nitrita s Greiss reagensom (smjesa N-(1-naftil)etilendiamin dihidroklorid sa sulfanil amidom). Absorbancija nastalog kompleksa mjeri se na valnoj dužini od 540 nm.
Reagensi;
Natrij nitrit (NaNO₂)
Kloridna kiselina (HCl)
Octena kiselina
N-(1-naftil)etilendiamin dihidroklorid (C₁₀H₇NHCH₂CH₂NH₂*2HCl)
Sulfanil amid (C₆H₅N₂O₂S)
Postupak;
Prije određivanja nitrata priprema se kompozitni reagens otapanjem soli sulfanil amida i N-(1-naftil)etilendiamin dihidroklorida u razrijeđenoj otopini HCl. Iz standardne otopine nitrita razrjeđenjem se napravi 4 do 5 standardnih koncentracija koje odgovaraju rasponu koncentracija očekivanih u uzorcima. Sam postupak nitrita sastoji se u mjerenju najmanje dvije slijepe probe, standardnih otopina i uzoraka.

Određivanje ortosilikata
Postupak određivanja ortosilikata temelji se na formiranju H₄SiMo₁₂O₄₀ nakon čega slijedi redukcija Mo uz nastanak Mo kompleksa (heteropolymonybdate) čija se absorbancija mjeri na valnoj dužini od 810 nm.
Reagensi:
Natrijev heksafluorosilikat (Na₂SiF₆)
Kloridna kiselina (HCl)
Sulfatna kiselina (H₂SO₄)
Amonij heptamolibdat tetrahidrat ((NH₄)₆Mo₇O₂₄*4H₂O)
4-(Metilaminofenol) hemisulfat
Natrijev sulfit (Na₂SO₃)
Oksalna kiselina (C₂H₂O₄)

Postupak:
Prije određivanja ortosilikata priprema se kompozitni reagens koji se sastoji od 4-(Metilaminofenol) hemisulfata, natrijevog sulfita, oksalne kiseline i sulfatne kiseline. Iz standardne otopine ortosilikata razrjeđenjem se napravi 4 do 5 standardnih koncentracija koje odgovaraju rasponu koncentracija očekivanih u uzorcima. Sam postupak određivanja ortosilikata sastoji se u mjerenju najmanje dvije slijepe probe, standardnih otopina i uzoraka.

Dobiveni rezultati prikazani su u tablici 3_11.

<table>
<thead>
<tr>
<th>V1-1</th>
<th>PO₄⁻</th>
<th>NH₄⁺</th>
<th>NO₂⁻</th>
<th>NO₃⁻</th>
<th>SiO₄²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,022</td>
<td>0,011</td>
<td>0,154</td>
<td>0,86</td>
<td>2,75</td>
<td></td>
</tr>
<tr>
<td>V1-2</td>
<td>0,029</td>
<td>0,018</td>
<td>0,136</td>
<td>1,16</td>
<td>2,54</td>
</tr>
<tr>
<td>V2-1</td>
<td>0,023</td>
<td>0,017</td>
<td>0,060</td>
<td>11,20</td>
<td>3,19</td>
</tr>
<tr>
<td>V2-2</td>
<td>0,055</td>
<td>0,859</td>
<td>0,125</td>
<td>11,48</td>
<td>2,0</td>
</tr>
<tr>
<td>V3-1</td>
<td>0,047</td>
<td>0,034</td>
<td>0,267</td>
<td>8,64</td>
<td>2,03</td>
</tr>
<tr>
<td>V3-2</td>
<td>0,038</td>
<td>0,026</td>
<td>0,197</td>
<td>6,73</td>
<td>2,59</td>
</tr>
<tr>
<td>V4-1</td>
<td>0,052</td>
<td>0,025</td>
<td>0,071</td>
<td>11,99</td>
<td>2,64</td>
</tr>
<tr>
<td>V4-2</td>
<td>0,056</td>
<td>0,026</td>
<td>0,096</td>
<td>4,36</td>
<td>2,22</td>
</tr>
</tbody>
</table>

3.4.2.2 Toksični metali
Metali su važan čimbenik svakog vodenog okoliša, jer o njima ovisi bioraznolikost vodenog ekosustava. U okolišu su oduvijek prirodno prisutni, a njihova koncentracija regulirana je prirodnim procesima. Osim za održanje života, metali su prisutni i u mnogim drugim procesima unutar vodenog sustava. Koncentracija metala u vodama kontrolirana je atmosferskom precipitacijom i trošenjem stijena i tla, a razvojem industrije raste u vodama. Otpadne vode, kućanski i industrijski otpad i riječni dotoci također doprinose povećanoj koncentraciji metala u vodama. Urbani razvoj sve više rezultira povišenim zagađenjima na lokacijama u blizini velikih gradova/tvornica. Zrakom se također prenosi sve više metala koji se ispuštaju u obliku čestica ili para. Mjerenjem koncentracije metala u tragovima pratimo ljudski utjecaj na lokalnoj i globalnoj prirodnoj skali, jer su koncentracije mnogih porasle zbog...
studija utjecaja na okoliš

pretjerane ljudske eksploatacije prirode i razvoja industrije. Važno je imati na umu da metali nisu biorazgradivi i da jednom uneseni u okoliš zauvijek ostaju njegov dio. Metali u prirodnim vodama raspodjeljuju se između otopljenih anorganskih i organskih formi, a jednim dijelom vezani su i za plivajuće čestice različite veličine. Uzorkovanje morske vode izvršeno je ručno u boce od Fluoriranog Etilen Propilena (FEP) od 1 L. Boce korištene za uzorkovanje i analizu prethodno su oprane s 10% HNO₃ i potom temeljito isprane s MQ vodom. Svaka boca je još prije koначnog uzorkovanja najmanje tri puta isprana ambijentalnom morskom vodom. Sakupljeni uzorci morske vode čuvani su u prijenosnim frižiderima do dolaska u laboratorij i daljnje obrade.

Uzorci vode za analizu otopljenih metala filtrirani su pomoću šprice kroz celulozno-acetatni filter veličine otvora 0,45 μm (Sartorius).

Za određivanje koncentracija otopljenih metala priređeno je po 250 mL uzorka koji su zakiseljeni na pH <2 dodatkom 500 μL „suprapure“ koncentrirane dušične kiseline (Merck, Darmstad, Njemačka). Nakon toga, uzorci su tijekom 24 h bili izloženi ultraljubičastom zračenju (UV) kako bi se razorili jaki organski spojevi metala. Koncentracije metala prikazane u tablici 3_12 određene su masenom spektrometrijom s induktivno spregnutom plazmom visoke rezolucije, HR ICP-MS (Element2, Thermo, Bremen) na Institutu Ruđer Bošković. Ovaj instrument karakterizira visoku osjetljivost, velik linearni raspon i mogućnost paralelnog određivanja do 50 elemenata (multielementna analiza), opremljen autosamplerom tako da ima mogućnost automatizacije i mjerenja velikog broja uzoraka u relativno kratkom vremenskom periodu (u našem slučaju jedan uzorak svakih cca 6 min). Izmjerene koncentracije metala u vodi prikazane su u tablici 3_12.

Tablica 3_12 Koncentracije otopljenih metala u vodi (μg/L)

<table>
<thead>
<tr>
<th></th>
<th>Pb</th>
<th>Cu</th>
<th>Zn</th>
<th>Cr</th>
<th>Co</th>
<th>Ni</th>
<th>V</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1-1a</td>
<td>0,020</td>
<td>0,399</td>
<td>1,293</td>
<td>0,163</td>
<td>0,023</td>
<td>0,447</td>
<td>1,538</td>
<td>0,134</td>
<td>0,086</td>
</tr>
<tr>
<td>V1-1</td>
<td>0,034</td>
<td>0,573</td>
<td>1,675</td>
<td>0,160</td>
<td>0,023</td>
<td>0,448</td>
<td>1,560</td>
<td>1,015</td>
<td>0,416</td>
</tr>
<tr>
<td>V1-2</td>
<td>0,023</td>
<td>0,529</td>
<td>2,611</td>
<td>0,102</td>
<td>0,019</td>
<td>0,320</td>
<td>1,013</td>
<td>0,679</td>
<td>1,128</td>
</tr>
<tr>
<td>V1-3</td>
<td>0,035</td>
<td>0,460</td>
<td>3,188</td>
<td>0,194</td>
<td>0,030</td>
<td>0,448</td>
<td>1,635</td>
<td>1,122</td>
<td>0,814</td>
</tr>
<tr>
<td>V2-1a</td>
<td>0,073</td>
<td>0,444</td>
<td>2,094</td>
<td>0,169</td>
<td>0,030</td>
<td>0,470</td>
<td>1,563</td>
<td>0,359</td>
<td>0,242</td>
</tr>
<tr>
<td>V2-1</td>
<td>0,082</td>
<td>0,689</td>
<td>3,847</td>
<td>0,176</td>
<td>0,036</td>
<td>0,544</td>
<td>1,524</td>
<td>0,864</td>
<td>2,180</td>
</tr>
<tr>
<td>V2-2</td>
<td>0,022</td>
<td>0,404</td>
<td>1,435</td>
<td>0,185</td>
<td>0,036</td>
<td>0,466</td>
<td>1,566</td>
<td>1,039</td>
<td>0,342</td>
</tr>
<tr>
<td>V2-3</td>
<td>0,040</td>
<td>0,390</td>
<td>1,532</td>
<td>0,195</td>
<td>0,028</td>
<td>0,483</td>
<td>1,646</td>
<td>0,478</td>
<td>0,285</td>
</tr>
<tr>
<td>V3-1</td>
<td>0,066</td>
<td>0,484</td>
<td>1,238</td>
<td>0,156</td>
<td>0,038</td>
<td>0,508</td>
<td>1,551</td>
<td>0,372</td>
<td>0,099</td>
</tr>
<tr>
<td>V3-2</td>
<td>0,022</td>
<td>0,456</td>
<td>1,290</td>
<td>0,163</td>
<td>0,035</td>
<td>0,501</td>
<td>1,815</td>
<td>0,951</td>
<td>0,251</td>
</tr>
<tr>
<td>V3-3</td>
<td>0,029</td>
<td>0,423</td>
<td>0,941</td>
<td>0,172</td>
<td>0,028</td>
<td>0,483</td>
<td>1,642</td>
<td>1,073</td>
<td>0,278</td>
</tr>
<tr>
<td>V4-1a</td>
<td>0,115</td>
<td>0,754</td>
<td>1,514</td>
<td>0,168</td>
<td>0,039</td>
<td>0,454</td>
<td>1,518</td>
<td>0,792</td>
<td>0,548</td>
</tr>
<tr>
<td>V4-2</td>
<td>0,028</td>
<td>0,454</td>
<td>0,757</td>
<td>0,174</td>
<td>0,029</td>
<td>0,458</td>
<td>1,526</td>
<td>0,948</td>
<td>0,202</td>
</tr>
<tr>
<td>V4-3</td>
<td>0,018</td>
<td>0,417</td>
<td>0,613</td>
<td>0,164</td>
<td>0,035</td>
<td>0,455</td>
<td>1,549</td>
<td>1,100</td>
<td>0,217</td>
</tr>
<tr>
<td>V4-4</td>
<td>0,033</td>
<td>0,419</td>
<td>1,499</td>
<td>0,165</td>
<td>0,031</td>
<td>0,451</td>
<td>1,598</td>
<td>0,971</td>
<td>0,220</td>
</tr>
</tbody>
</table>
Uredba o standardu kakvoće voda (NN 96/19) osim slatkovodnih sustava (rijeke, jezera) obuhvaća praćenje standardna kakvoće voda i u prijelaznim i priobalnim vodama. Za sve tvari osim metala (kadmij, olovo, živa i nikal), vrijednosti SKVO izražene su kao ukupne koncentracije u nefiltriranom uzorku vode. U slučaju metala, standardi kakvoće vodnog okoliša (SKVO) se odnosi na koncentraciju u otopljenoj fazi dobivenoj filtriranjem vode kroz filter sa porama promjera 0,45 µm ili drugom odgovarajućom obradom. Treba istaknuti da je u prethodnim uredbama koncentracija metala iskazivana za nefiltrirani uzorak. Utvrđeno je da ukupna koncentracija metala nije u direktnoj vezi s njihovim utjecajem na organizme koje žive u vodi te je kao prijelazno rješenje propisano mjerenje otopljene frakcije metala. Iako je znanstveno dokazano da je poznavanje koncentracija pojedinih vrsta metala (specijacija) unutar otopljene frakcije jedino ispravno za tumačenje i određivanje njihovog potencijalnog štetnog djelovanja, takav je pristup zbog svoje kompleksnosti u sadašnjim okolnostima nemoguće sprovesti u praksi. Sve izmjerene koncentracije metala (tablica 3_12) su znatno niže od prosječnih godišnjih koncentracija (PGK) i maksimalnih godišnjih koncentracija (MGK) propisanih Uredbom o standardu kakvoće voda (NN 96/19).

3.4.2.3 Fizičko-kemijski parametri

Na svim lokacijama su u tri navrata (kolovoz i rujan 2019. i siječanj 2020.) izmjereni fizičko-kemijski parametri multiparametnom sondom YSI EXO 2 (slika 3_42). Izmjerene vrijednosti za ljetnu i zimsku sezonu grafički su prikazane na slikama 3_43 do 3_44.
Studija utjecaja na okoliš

Slika 3.43 S lijeva na desno temperatura tijekom ljetne (kolovoz i rujan) i zimske sezone (siječanj)

Slika 3.44 S lijeva na desno zasićenost kisikom tijekom ljetne (kolovoz i rujan) i zimske sezone (siječanj)
Slika 3_45 S lijeva na desno salinitet tijekom ljetne (kolovoz i rujan) i zimske sezone (siječanj)

Slika 3_46 S lijeva na desno pH tijekom ljetne (kolovoz i rujan) i zimske sezone (siječanj)
3.5 BIOLOŠKA RAZNOLIKOST

3.5.1 Životne zajednice bentosa istraživanih područja

Uvala Bočarije vele

Uvala je zaštićena strmom obalam (slika 3_47). Istraživano dno je blagog nagiba, a ronjenje je obavljeno duž transekta do 30 m dubine (slika 3_48). Od površine do dubine od 4 m dno je kamenito s većim gromadama kamenja i razvijenom bioconeozom infralitoralnih alga. Dominiraju smeđe alge Halopteris scoparia, Cystoseira barbata i Padina pavonica, te spužve Chondrilla nucula i Aplysina aerophoba (slika 3_49).

Podvodne hridi obrasle fotofilnim algama na dubini od 3 do 4 m prelaze u dno ljušturnog pijeska blagog nagiba i bioconeozom obalnih detritusnih dna s mjestimičnim većim kamenim blokovima. Na njima su česte vrste mnogočetinaš Serpula vermicularis i stapčar Antedon mediterranea.
Studija utjecaja na okoliš

Slika 3_47 Istraživani profili u uvali Bočarije vele i pregledano područje (strelice)

Na 12 m dubine utvrđene su manje livade morske cvjetnice *Cymodocea nodosa* (relativno rijetke gustoće), u kojima žive mnogočetinaš *Sabella spallanzani* (slika 3_50).

Slika 3_48. Raspored bentoskih biocenoza na lokaciji Bočarije vele (profil a)
Slika 3.49 Biocenoza infralitoralnih alga na lokaciji Bočarije vele

Slika 3.50 Livada morske cvjetnice *Cymodocea nodosa* na lokaciji Bočarije vele
Slika 3_51 Koraligenska biocenoza (dubina 28 metara) na rubnom dijelu ulaza u uvalu na lokaciji Bočarije vele. Spužva *Axinella polypoides*.

Od 20 m prema dubljem dijelu istraživanog područja nalazi se zamuljeno pjeskovito dno s biocenozom zamuljenih pijesaka zaštićenih obala. Relativno je rijetka i fauna koja živi u sedimentu, a utvrđeno je samo nekoliko vrsta, poput ježinca *Spatangus purpureus*. Kod riba prevladavaju vrste iz porodica Labridae, Sparidae, Serranidae, Gobidae i Maenidae. Utvrđene su i dvije jedinke kokota glavaša *Chelidonichthys lastoviza* te raža *Raja miraletus*.

Na rubnim dijelovima ulaza u uvalu razvijena je koraligenska biocenoza između 25 i 29 m dubine s tipičnim vrstama spužava i gorgonija te manjim populacijama kamenih koralja (slike 3_51 i 3_52).

Duž cijelog istraživanog dijela uočeno je mnogo sitnjeg krutog otpada (staklene boce, plastika i konzerve) istaloženog na dnu.
Slika 3_52 Koraligenska biocenoza (dubina 26 metara) na rubnom dijelu ulaza u uvalu na lokaciji Bočarije vele. Gorgonija *Eunicella cavolini*.

Uvala Bilančevica

Uvala se nalazi sjeverno od uvale Bočarije vele i površinom je znatno manja (slika 3_49). Istraživanje je provedeno duž transekta do dubine od 20 m. Od obale dno uvale pada pod blagim nagibom između 15° i 20° (slika 3_50). Od površine do dubine od 3 metra dno je kamenito s razvijenom bioconeozom infralitoralnih alga. Ovdje dominiraju zelene alge *Chaetomorpha linum* i *Flabellia petiolata* te smeđe alge *Halopteris scoparia*, *Padina pavonica* i *Cystoseira barbata* kao najbrojnija (slika 3_51).

Mjestimično se, na sedimentu između stijena, pojavljuju manja naselja morske cvjetnice *Cymodocea nodosa*. Od životinjskih vrsta česte su *Aplysina aerophoba* i *Cliona viridis*, kameni koralj *Balanophyllia europaea*, moruzgve *Cribrinopsis crassa* i *Cereus pedunculatus*, zeleni zvjezdani *Bonellia viridis* te puževi *Cerithium vulgatum*, *Bittium reticulatum* i *Haliotis*.
Slika 3_53 Istraživani profili u uvali Bilančevica i pregledano područje (strelice)

Slika 3_54 Raspored bentoskih biocenoza na lokaciji Bilančevica (profil a)
Studija utjecaja na okoliš

Slika 3_55 Biocenoza infralitoralnih alga na lokaciji Bilančevica

Slika 3_56 Zvjezdača Astropecten aranciacus u biocenozi obalnih detritusnih dna na lokaciji Bilančevica
Studija utjecaja na okoliš

tuberculata. Česti školjkaši su Mytilaster minimus, Arca noae i Ostrea edulis, mnogoćetinaš Protula tubularia te trp Ocnus planci. Od riba su utvrđene plove kneza Coris julis, brancina Dicentrarchus labrax i trlja Mullus surmuletus.

Od 3 do 12 m dubine nastavlja se sedimentno dno s biocenozom obalnih detritusnih dna. Ovdje uglavnom prevladavaju moruzgve Phymanthus pulcher i Bunodactis verrucosa, školjkaš Pecten jacobaeus, mnogoćetinaš Lagisca extenuata, plaštenjak Phallusia mammilata i zvjezdača Astropecten aranciacus (slika 3_52).

Od 12 m u dubinu rasprostranjen je zamuljeni pijesak s razvijenom biocenozom zamuljenih pijesaka zaštićenih obala. Česti su mnogoćetinaši Myxicola infundibulum i Sabella pavonina, rak Paguristes eremita, mahovnjak Pentapora foliacea i žuti glavoč Gobius vittatus. Duž cijelog istraživanog dijela uočeno je mnogo manjeg krutog otpada.

Uvala Velika Črnika

Uvala se nalazi južno od mjesta Karlobag uz samu magistralnu cestu (slika 3_53). Dno od obale pada pod blagim nagibom između 10° i 20°. Najveća dubina zarona duž transekta bila je 25 m (slika 3_54).

Od površine do 4 m dubine dno je uglavnom kamenito dok se između stijena mjestimično nalazi ljušturi pijesak (slika 3_55).

Ovdje je razvijena biocenoza infralitoralnih alga s dominirajućim zelenim algama Chaetomorpha linum, Codium vermilara i C. fragile, a mjestimično je prisutna i Ulva rigida. Česte su smeđe alge Halopteris scoparia, Ectocarpus siliculosus, Cystoseira barbata, Padina pavonica i Sargassum vulgare. Prisutne su i crvene alge Amphiroa rigida, Catenella caespitosa i Rhytiphloea tinctoria.
Slika 3_57 Istraživani profili u uvali Velika Črnika i pregledano područje (strelice)

Slika 3_58 Raspored bentoskih biocenoza na lokaciji Velika Črnika (profil a)
Od životinjskih vrsta u ovoj biocenozi su česte spužve *Aplysina aerophoba*, *Cliona viridis* i *Crambe crambe*, kameni koralj *Balanophyllia europaea*, moruzgve *Anemonia sulcata*, *Cereus pedunculatus* i *Condylactis aurantiaca*, zeleni svjetiljki *Bonellia viridis* te puževi *Cerithium vulgatum*, *C. rupestre*, *Bittium reticulatum*, *Haliothis tuberculata*, *Gibbula varia* i *Vermetus triquetrus*. Prisutni su i školjkaši *Mytilaster minimus*, *Loripes lacteus*, *Arca noae* i *Ostrea edulis*, mnogočetinaš *Protula tubularia*, rak *Inachus dorsettensis* te trpovi *Holothuria polii* i *Oenus planci*. Od riba su utvrđene plove brancina *Dicentrarchus labrax* i trlja *Mullus surmuletus*, a utvrđeno je i više jedinki vučića *Serranus hepatus*.

Od 3 do 13 m dubine nastavlja se sedimentno dno s utvrđenom biocenozom obalnih detritusnih dna. Ovdje dominira smeda alga *Halopteris scoparia* koja se nalazi nepričvršćena na morskom dnu, na 8 m dubine. Također prevladavaju moruzgve *Condylactis aurantiaca*, *Phymanthus pulcher* i *Cribrinopsis crassa*, školjkaši *Gastrochaena dubia*, *Corbula gibba*, *Glycymeris glycymeris* i *Pecten jacobaeus*, mnogočetinaši *Lagisca extenuata*, plaštenjaci *Diplosoma listerianum*, *Microcosmus sabatieri*, *Phallusia mammilata* te svježe životinje *Astropecten auranciacus* i *Marthasterias glacialis*. Česti su glavoči *Gobius cruentatus*, *G. niger* i *G. bucchichii* te pauk *Trachinus draco*. Na dubini između 8 i 12 m utvrđene su stijene
i veće nakupine kamenih gromada s bioconeozom infralitoralnih alga. Ovdje prevlada smeđa alga *Cystoseira barbata*.

Od 13 m u dubinu nastavlja se zamuljeni pijesak s razvijenom bioconeozom zamuljenih pijesaka zaštićenih obala. Ovdje je čest mnogočetinaš *Myxicola infundibulum*, mješčićnice *Aplidium conicum*, *A. turbinatum* i *Didemnum* sp. te ježinac *Schizaster canaliferus*. Mnogočetinaš *Sabella pavonina* na dubini od 22 m tvori veću populaciju na sedimentu (slika 3_61). Utvrđena je i jedna veća jedinka drhtulje *Torpedo marmorata*. Duž cijelog istraživanog dijela uočeno je mnogo krutog otpada na dnu.
Slika 3_61 Populacija mnogočetina Sabella pavonina na lokaciji Velika Črnika

Uvala Mala Črnika
Lokacija uvale se nalazi južnije od uvale Velika Črnika uz magistralnu cestu (slika 3_62). Istraživanje je obavljeno duž transekta do 18 m dubine. Od površine do 3 metra dubine hridinasto dno pada okomito pod kutom od 10º, dok su na ulazu u uvalu obala strmija (slika 3_63). U razvijenoj biocenozi infralitoralnih alga prevladavaju zelena alga Valonia utricularis, smeđe alge Cystoseira barbata, Dictyota dichotoma, Padina pavonica te nešto manje vrsta Sargassum vulgare (slika 3_64). Na 9 m dubine (ulaz u uvalu) na manjem udubljenju na stijeni utvrđen je facijes koraligenske biocenoze u kojoj prevladavaju crvena alga Peyssonnelia rubra i kameni koralj Caryophyllia inornata (slika 3_65). Na dubini od 3 do 9 m hridinasto dno postupno prelazi u dno ljušturnog pijeska i biocenozu obalnih detritusnih dna s manjim livadama morske cvjetnice Cymodocea nodosa i velikim brojem jedinki žarnjaka Cerianthus membranaceus i Condylactis aurantiaca te plaštenjaka Phallusia mammilata i P. fumigata koji naseljava biogeno učvršćenu podlogu. Od spužava su česte vrste roda Suberites, koja obrašta puževu kućicu s rakom samcem, najčešće vrstom Pagurus anachoretus. Čest je i drugi, manji rak samac Paguristes eremita, koji živi u simbiozi s moruzgvoj Adamsia carcinopados. Druga moruzgva, također česta, a prihvaća se za kućice puževa roda Murex je Calliactis parasitica. Na većem kamenju utvrđena je spužva Cliona celata (slika 3_66).
Slika 3_62 Istraživani profili u uvali Mala Črnika i pregledano područje (strelice)

Slika 3_63 Raspored bentoskih biocenoza na lokaciji Mala Črnika (profil a)
Slika 3_64 Biocenoza fotofilnih alga na lokaciji Mala Črnika

Slika 3_65 Facijes koraligenske biocenoze. Dubina 9 m.
Slika 3_66 Spužva *Cliona celata* unutar biocenoze obalnih detritusnih dna na lokaciji M. Črnika.

Slika 3_67 Trp *Holothuria tubulosa* unutar biocenoze obalnih detritusnih dna na lokaciji Mala Črnika.
Ovdje nalazimo i školjkaše *Chlamys varia*, *Corbula gibba*, *Paphia aurea* i *Pecten jacobaeus*, cjevaše s vapnenim cjevećicama iz rodova *Serpula*, *Protula* i *Pomatoceros*, cjevaša s mekanom cjevećicom vrste *Sabellapallanzanii* te mahovnjake *Pentapora foliacea* i *Bugulina simplex*. Svi ovi organizmi dodatno učvršćuju sekundarno tvrdo dno i tako stvaraju uvjete za naseljavanje drugih sesilnih životinja, ali i alga. Od riba u ovoj biocenozi nalazimo vrste iz porodica Gobidae, Trachinidae, Mullidae, Solenidae.

Od 9 m prema dubljem dijelu istraživanog područja nalazi se zamuljeno pjeskovito dno s biocenozom zamuljenih pijesaka zaštićenih obala. Ovdje prevladavaju mješčičnice *Phallusia mammilata* i *P. fumigata*. Utvrđena je i veća jedinka spužve *Geodia gigas* te nekoliko jedinki zvjezdače *Astropecten spinulosus*. Čest je i mnogočetinaš *Myxicola infundibulum* te trp *Holothuria tubulosa* (slika 3_67).

Pronađeni plastični otpad na dnu vjerojatno djelomično potječe od turističkih brodova koji ovuđa prolaze.
Marasova punta

Istraživani profil nalazi se na zapadnoj strani Marasove punte (slika 3_68). Supralitoralna stepenica visoka je oko 3 m i vrlo je izložena udarima valova (slika 3_69). Hridinasta podmorska litica s biocenozom fotofilnih alga spušta se do dubine od 17 metara pod kutom između 45° i 90°. Unutar biocenoze infralitoralnih alga utvrđene su manje nakupine ljušturnog sedimenta s biocenozom obalnih detritusnih dna.

Ovdje su česte žuta gorgonija *Eunicella cavolini* i bijela gorgonija *Eunicella singularis* (slika 3_70). Koraligenska biocenoza se nastavlja do dubine od 38 m, a dalje se nastavlja biocenoza obalnih detritusnih dna. Unutar koraligenske biocenoze također nalazimo mjestimično nakupine ljušturnog sedimenta s biocenozom obalnih detritusnih dna, dok se na dubini od 25 m nalazi veća polušpilja s biocenozom polutamnih špilja. Raspored utvrđenih biocenoza na lokaciji Marasova punta prikazan je na slici 3_69.

Slika 3_68 Istraživani profil i pregledano područje (strelica)
Studija utjecaja na okoliš

Slika 3_69 Profil Marasova punta s vertikalnim rasporedom razvijenih biocenoza.

Slika 3_70 Bijela gorgonija *Eunicella singularis* na lokaciji Marasova punta. Dubina 15 metara.
Vanjska strana uvale Tvrduša

Istraživani profil nalazi sjevernije, na vanjskoj strani uvale Tvrduša (slika 3_71). Supralitoralna stepenica visoka je oko četiri metra i izložena je udarima valova. Hridinasta litica s nekoliko manjih polušpilja spušta se do dubine od 52 m pod kutom od 45° (slika 3_72).

Na mediolitoralnoj stepenici nalazimo karakterističnu crvenu moruzgvu *Actinia equina*. Stijena obrasla fotofilnim algama stepeničasto pada do 18 m dubine. Česti su kameni koralji *Balanophyllia europaea* i zelena vlasulja *Anemonia viridis*. Uz stijenu česte su opnena voskovica *Cerianthus membranaceus* i moruzgva *Anthopleura ballii*. Prema dubini (od 20 m) litica obiluje rupama, prevjesima, prolazima (uglavnom od većih stijena odlomljenih s obale) i manjim špiljama (slika 3_73). Ovdje je razvijena koraligenska biocenoza i biocenoza polutamnih špilja. Ovdje dominiraju kameni koralji *Leptopsamnia pruvoi*, *Caryophyllia inornata* i *Madracis pharensis*. Od riba je česta vrsta matulić barjaktarić *Anthias anthias*.

Slika 3_71 Istraživani profili na lokaciji Tvrduša i pregledano područje (strelica)
Slika 3_72 Profil Tvrduša s vertikalnim rasporedom razvijenih biocenoza

Slika 3_73 Koraligenska biocenoza na lokaciji Tvrduša. Dubina 35 metara.
Slika 3_74 Koraligenska biocenoza i biocenoza zamuljenih pijesaka zaštićenih obala na lokaciji Tvrduša. Dubina 52 metra.

Od 51 m dubine nastavlja se pjeskovito-ljušturno dno s biocenozom zamuljenih pijesaka zaštićenih obala koje se spušta pod nagibom od 20° dalje u dubinu. Ljušturno dno prekrivaju crvene alge *Vidalia volubilis* i *Lithophyllum racemus*, a između alga utvrđene su opnene moruzgve *Cerianthus membranaceus*.

Sagledavajući sva predmetna područja u cjelini bioraznolikost vrsta je velika, kao i brojnost pojedinih jedinki.

Od strogo zaštićenih vrsta na istraživanom području utvrđene su tek morska cvjetnica *Cymodocea nodosa* (Ucria) Asch. čvorasta morska resa te na lokalitetu uvala Velika Črnik u busenasti koralj *Cladocora caespitosa* (Linnaeus, 1767) kladokora koji je ugrožena vrsta (Pravilnik o strogo zaštićenim vrstama, Narodne novine, 144/2013 i 73/2016).

Provedenim istraživanjem područja planiranih zahvata nisu utvrđene strogo zaštićene vrste mekušaca (puževi i školjkaš).
3.5.2. Staništa predmetnih područja

Sukladno Pravilniku o popisu stanišnih tipova i karti staništa (NN, 27/21) na istraživanim područjima prema nacionalnoj klasifikaciji staništa (NKS) razvijene su životne zajednice koje pripadaju slijedećim stanišnim tipovima:

- Biocenoza supralitoralnih stijena F.4.2.1.
- Biocenoza gornjih stijena mediolitorala G.2.4.1.
- Biocenoza donjih stijena mediolitorala G.2.4.2.
- Biocenoza infralitoralnih šljunaka G.3.4.1.
- Biocenoza infralitoralnih alga G.3.6.1.
- Biocenoza obalnih detritusnih dna G.4.2.2.
- Koraligenska biocenoza G.4.3.1.
- Biocenoza zamuljenih pijesaka zaštićenih obala G.3.2.3.

Prema Prilogu II Pravilnika, navedeni stanišni tipovi istraživanih područja spadaju u ugrožena i rijetka staništa prema Direktivi o staništima.

Uzimajući u obzir sva predmetna područja duž transekata dominiraju stanišni tipovi: Biocenoza infralitoralnih alga, Biocenoza obalnih detritusnih dna i Biocenoza zamuljenih pijesaka zaštićenih obala.

Sva staništa zajedno s utvrđenim biocenozama su u dobrom stanju, s vrlo malo degradacije uzrokovan je antropogenim utjecajem (sitniji kruti otpad, tragovi sidrenja). Na većini odbačenog krutog otpada naselili su se sesilni morski organizmi. Vidljivost u uvalama je dobra. Utvrđen je jaki utjecaj slatke vode koja potječe od podmorskog vrulja na svim istraživanim lokacijama.
Studija utjecaja na okoliš

Slika 3_75 Spužva *Axinella damicornis* i žuta zadružna moruzga *Pararzoanthus axuinellae* na lokaciji Bočarije vele

Slika 3_76 Kameni koralj *Cladocora caespitosa* na lokaciji Velika Črnika
Slika 3_77 Žuta zadružna morugva *Pararzoanthus axuinellae* na lokaciji Bočarije vele

Slika 3_78 Spužve *Cliona celata* i *Spongia officinalis* na lokaciji Mala Črnika
Slika 3_79 Biocenoza infralitoralnih alga na ulazu u uvalu Bočarije vele

3.5.3 Fitoplankton

7,0 μmol L⁻¹ za otopljeni anorganski dušik i 0,3 – 15,4 μmol L⁻¹ za ortosilikate. Dijatomeje su prevladavale u fitoplanktonu s maksimalnom abundancijom u rasponu od 7,3 x 10⁴ stanica L⁻¹ (85% ukupnog fitoplanktona) na najviše oligotrofnim lokacijama pa sve do 9,6 x 10⁵ stanica L⁻¹ (96% ukupnog fitoplanktona) na lokacijama s većom koncentracijom nutrijenata. Statistička analiza na osnovi bioloških i fizikalno kemijskih parametara podijelila je lokacije u tri glavne grupe. Prva grupa predstavljala je južni dio Velebitskog kanala s većom koncentracijom nutrijenata i prevladavajućom vrstom Thalassionema nitzschioides. Druga grupa uključila je lokacije iz središnjeg dijela Velebitskog kanala s nižim razinama nutrijenata i s prevladavajućom dijatomejom Bacteriastrum sp. Treća grupa uključila je lokacije u Paškom kanalu u kojima gotovo isključivo prevladava Bacteriastrum mannii sp. i prisutan je veći udio kokolitoforida. Ovo istraživanje također je donijelo prvi popis vrsta fitoplanktona prisutnih u ekstremno oligotrofnom području Velebitskog i Paškog kanala. Identificirali su 148 taksona od čega 91 dijatomeja, 47 dinoflagelata i 10 taksona raznih flagelata. Detaljna analiza pomoću elektronskog mikroskopa otkrila je tri vrste iz potencijalno toksičnog dijatomejskog roda Pseudo-nitzschia: P-n. calliantha, P-n. pseudodelicatissima i P-n. mannii. Rezultati tog istraživanja (tablica 3_17) predstavljaju značajan doprinos poznavanju sastava i raspodjele fitoplanktona u odnosu na prevladavajuće fizikalno kemijske uvjete u ovom slabo istraženom tranzitnom području (Šupraha i sur., 2011).

Prethodna uzorkovanja fitoplanktona u Velebitskom kanalu, u veljači 2002. godine na lokaciji Lukovo Šugarje pokazala su tipičnu vertikalnu zimsku inverznu stratifikaciju raspodjelu temperature. Utvrđena je mala količina fitoplanktona: 2 000 do 22 200 stanica mikrofitoplanktona, te 8 000 do 131 000 stanica nanoplanktona po litri mora. Vertikalna raspodjela mikrofitoplanktona pokazala je potpovršinski maksimum abundancije kod dijatomeja (na 2 m dubine) i kokolitoforida (na 10 m dubine) te malo povećane i ustaljene vrijednosti dinoflagelata u dubljim slojevima. Zabilježene su relativno velike količine kokolitoforida (10⁵ stanica L⁻¹) na dubini od 10 m uz donji rub halokline. Ova vrsta je pokazatelj marinskog utjecaja u obalom moru. Nanoplankton je pokazao potpovršinsko nakupljanje u sloju između 10 m (mali dinoflagelati) i 20 m dubine (nanoplanktonski kokolitoforid Emiliania huxleyii i kriptofiti), u donjem dijelu halokline. Pojava veće količine kriptofita na površini mogla je biti rezultat razvoja vrsta bočate vode. Zbog malih dimenzija stanica (nanoplankton) populacija se uspješno održava u kompeticiji za eventualno malu koncentraciju nutrijenata.
Studija utjecaja na okoliš

Prema publiciranim kriterijima za klasificiranje stupnja eutrofikacije uz istočnu obalu Jadrana (Viličić 1989), navedena raspodjela abundancije fitoplanktona može indicirati mezotrofnu (2. kategorija trofije) vodenu masu. Slična raspodjela dobivena je na lokaciji Ražanac u 1981/82. godini. Kompletanja analiza trofičkog stupnja akvatorija može se dobiti ako se uzmu u obzir i fizikalno kemijski parametri, kao što su koncentracija nutrijenata, kisik, svjetlosne prilike i dinamika vodenih masa, a također i drugi biološki parametri. Mezotrofni karakter akvatorija pokazuje također prevladavajući udio stanica (dijatomeja i kokolitoforida) s malim staničnim volumenom (<4 000 μm³ L⁻¹) te neznatan udio vrsta koje karakteriziraju eutrofizirane sustave. Npr. dinoflagelat *Prorocentrum minimum* koji je karakterističan za područja bogata hranjivim solima je prisutan, ali s malim brojem stanica.

3.5.4 Zooplankton

studija utjecaja na okoliš

biomase mrežnog zooplanktona svrstava Velebitski kanal u prelazno područje između mezotrofnog južnog i eutroficiranog sjevernog Jadrana. S izuzetkom ljetnih mjeseci i izrazite dominacije kladocera, osnovnu komponentu biomase mrežnog zooplanktona predstavljaju kopepodi. Iz usporedbе rezultata na promatranoj lokaciji može se zaključiti da su područja planiranog uzgajališta pastrva slična kao i ostali dio Velebitskог kanala.

3.5.5 Životne zajednice nektona

U Velebitskom kanalu živi veliki broj vrsta koje možemo ubrojiti u nekton i pripadaju u više sistematskih skupina poput riba, morskih kornjača te morskih sisavaca od kojih su mnoge strogo zaštićene i ugrožene vrste. Velik dio riba pripada u nekton i značajan dio vremena provode u stupcu vode. Najveći broj riba koje ovdje žive ili povremeno zalaze ubrajamo u malu plavu ribu: srdele, papaline, u manjoj mjeri inćuni i šaruni, a od bijele ribe u ovom području žive bukve, salpe, ušate, cipli, gavuni, gire oštrulje i crneji. Prisutni predatori su velika plava riba (tune, palamide, iglice, skuše i lokarde), a od bijelih riba (zubatci, lice, brancini, te novo pridošle strijelke). Također se u manjem broju mogu naći morski psi (više različitih vrsta) pa čak i psina golema, koja se hrani planktonom.

U Jadranskom moru žive tri strogo zaštićene vrste kornjača koje povremeno zalaze u akvatorij Velebitskог kanala. Morski sisavci su strogo zaštićene vrste od kojih mnoge žive ili povremeno borave u Jadranском moru. U Velebitskom kanalu mogu se vidjeti dupini ponekad čak i kitovi. Sjevernije u području Kvarnerića, trajno boravi populacija od oko 150 dobrih dupina Tursiops truncatus. Rijetka i ugrožena vrsta morskog psa Cetorhinus maximus koji se hrani planktonom, ponekad zalazi u Jadran pa je tako i zabilježena u području Velebitskог kanala međutim njeni nalazi su čisto sporadični.

Morska cvjetnica posidonija, Posidonia oceanica tijekom provedenог istraživanja nije uočena. Posidonija nije rasprostranjena na većim dubinama, na kojima je planirano postavljanje kaveza uzgajališta.
3.5.6 Zaštićena područja i područja ekološke mreže Natura 2000

3.5.6.1 Zaštićena područja

Lokacije zahvata se ne nalaze unutar zaštićenih područja sukladno Zakonu o zaštiti prirode (NN 80/2013, 15/2018, 14/2019, 127/2019). Prema kartografskom prikazu zaštićenih područja RH (http://www.bioportal.hr/gis/, slika 3_80) najbliže zaštićeno područje od predmetnih zahvata je park prirode Velebit na prosječnoj udaljenosti od lokacija zahvata oko 0,4 km. Značajni krajobraz Zavratnica udaljen je oko 6 km od najbliže planiranog zahvata (V1) odnosno 9 km (V2), te više od 30 km od ostalih planiranih lokacija (V3 i V4).

Slika 3_80 Karta zaštićenih područja (www.bioportal.hr)
3.5.6.2 Ekološka mreža (Natura 2000)

Uvidom u kartografski prikaz područja ekološke mreže Natura 2000 (http://www.bioportal.hr/gis/, slika 3_81 i slika 3_82) lokacije predmetnih zahvata se ne nalaze na području ekološke mreže (Natura 2000) sukladno Uredbi o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže (NN 80/2019).

Slika 3_81 Karta s označenim POP područjima (www.bioportal.hr)

Provedenim postupcima prethodne ocjene prihvatljivosti za ekološku mrežu i sukladno Rješenjima Ministarstva gospodarstva i održivog razvoja

V2 (Klasa: UP/I 612-07/21-60/37, Urbroj:517-10-2-2-21-2) od 5. srpnja 2021. godine
V3 (Klasa: UP/I 612-07/21-60/36, Urbroj:517-10-2-2-21-2) od 6. srpnja 2021. godine

predmetni zahvat je prihvatljiv za ekološku mrežu i nije potrebno provesti postupak Glavne ocjene prihvatljivosti za ekološku mrežu (Prilog).
Slika 3_82 Karta POVS područja (www.biportal.hr)
3.6 VIZUALNA KVALITETA KRAJOBRAZA

Planirani zahvati nalaze se na području Ličko-senjske županije odnosno na području Grada Senja i Općine Karlobag. Spomenuti prostor prema krajobraznoj regionalizaciji Republike Hrvatske pripada krajobraznoj jedinici Kvarnersko-velebitski prostor. Planirani zahvati smjestit će se u Velebitskom kanalu na udaljenosti od oko 320 m od obale.

Osnovna obilježja ovog prostora su kvarnerski otoci i planina Velebit. Istočne strane prvog niza kvarnerskih otoka karakterizira kamenjar, gotovo bez vegetacije koji je posljedica bure i posolice. Velebitsku primorsku padinu također karakterizira kamenjar.

Krajobrazne vrijednosti ovog područja su jedinstvene i sveobuhvatne vizure s planinskih masiva (Velebita i Učke) na more (slika 3_83) dok su jednako impresivni pogledi s mora na planinske masive (slika 3_84).

Slika 3_83 Pogled s Velebita na more

Sveukupne krajobrazne karakteristike područja u kojima se planira uspostava uzgajališta su prirodna staništa u kojima dominira kamenjar s autohtonom vegetacijom na velebitskoj padini, odnosno kamenjar gotovo bez vegetacije na otocima Rabu i Pagu.
Ako govorimo o postojećem stanju prostora, u kome su predviđena buduća uzgajališta riba, imajući na umu da će ona biti podosta udaljena od obale, potrebno je ukazati na elemente formiranja prostora u neposrednoj okolini uzgajališta koje određuju vizualni karakter krajobraza, ali sagledavajući i šire vizure okolnog krajolika. Kako će se raditi o zahvatu na morskoj površini u kojoj je intervencija uvijek ista, bespredmetno je ocjenjivati i opisivati postojeći izgled same morske površine, stoga se ovaj dio studije prvenstveno usredotočuje na planiranu intervenciju iz okolnog prostora i opis karaktera prostora od šireg obuhvata do mikrolokacije koncentrirajući pažnju na samu obalnu crtu. Izgled krajolika oko uzgajališta moguće je analitički iščitati iz više različitih kutova, ovisno o usredotočenosti na pojedine elemente njegova formiranja. Morfološki, vegetativni ili segment oblikovanja ljudskom rukom čine zajedno kontinuiranu i nerazmrsivu sliku.
3.6.1 O karakteristikama šireg prostora

Tražeći temeljnu morfološku odrednicu kojom bi se mogla jednoznačno definirati šira struktura krajolika, neizostavno se nameće slika uranjanja golih i izlomljenih, strmih kosina velebitskih ploča, u kontinuiranu horizontalu morske plohe, s jedne strane, i s druge strane siluete otočnih masa koje manje ili više jasno, omeđuju vizuru prema nasuprotnom kraju Velebitskog kanala. Smjer kojim se pružaju i teku ovi elementi, neprikosnoveno je izrazit i prejak da bi ga se moglo negirati bilo kakvom intervencijom. Ova tri elementa dakle: Velebit, morska ploha i vizure otočne skupine iz prvog reda do obale te njihovi međusobni utjecaji materijalizirani u obalnoj liniji, u najvećoj mjeri, moglo bi se reći i potpuno određuju sveobuhvatan prostorni karakter. Utjecaj vegetacije, koja kontinuirano, ali rijetko i slabim intenzitetom pokriva ili ne pokriva velike dijelove planinskih padina, je neznatan, kao i stisnuta naselja uz samu obalnu crtu koja više služe kao referentne točke putniku po moru ili cestovnoj magistrali, nego kao šire odrednice. Rub izraženijeg velebitskog vegetativnog pokrova nije saglediv i nalazi se iza vidljivog grebena.

3.6.2. Opis mikrolokacije

V1 Tvrduša i Trsina

Budući položaj uzgajališta se nalazi sjeverno od luka Stinica i Jablanac u području koje nije naseljeno (slika 3_85).

Slika 3_85 Fotografija šireg prostora lokacije V1
Trajektni promet koji se odvija između luke Stinice i otoka Raba ne predstavlja opasnost za buduće uzgajalište jer je udaljen malo više od 4 km od trajektnog pristaništa. Sa sjeverne i južne strane uzgajališta nalaze se uvale Trsina (točnije Vicić draga) i Tvrduša u kojima se tijekom zimskih mjeseci i velikih kiša sliva velika količina slatke vode. Obala strmo ulazi u more ispod brežuljka Fortica (179,5 m.n.m.), tako da su dubine na udaljenosti od 130 m od kopna već oko 50 m. Na lokaciji do sada nije bilo nikakvih aktivnosti koje se odnose na marikulturu. Na samom kopnu ne postoji prilaz kopnenim putem (postoji kozji put do uvale Tvrduša) pa je do uzgajališta moguće doći samo morskim putem. U operativnom smislu bi se koristile luke Stinic za snabdijevanje uzgajališta.

V2 Bilančevica i Bočarije Vele

Budući položaj uzgajališta se nalazi sjeverno od luke Prizna u području koje nije naseljeno (slika 3_86).

![Slika 3_86 Fotografija šireg prostora V2 lokacije](#)

Trajektni promet koji se i ovdje odvija, između Prizne i Žigljena ne predstavlja opasnost za buduće uzgajalište jer je udaljen malo manje od 4 km od trajektnog pristaništa. Obala strmo ulazi u more tako da su dubine na udaljenosti od 150 m od kopna već oko 50 m. Posebno su...
dojmljive strme obale uvale Bilančevica, a između nje na sjeveru i uvale Bočarije vele nalazi se točna lokacija uzgojnih kaveza. Na lokaciji do sada nije bilo nikakvih aktivnosti koje se odnose na marikulturu. Sa sjeverne i južne strane uzgajališta nalaze se uvale u kojima se tijekom zimskih mjeseci i velikih kiša sliva velika količina slatke vode. Na samom kopnu ne postoji prilaz kopnennim putem pa je do uzgajališta moguće doći samo morskim putem. Jadranska magistralna cesta tu prolazi dosta daleko od obalne linije, čak više od 1 km od mora te se i ne vidi obalna crta. U operativnom smislu bi se koristile luke Stinice za snabdijevanje uzgajališta.

V3 Velika i Mala Črnika
Budući položaj uzgajališta se nalazi sjeverno od luke Porat u Lukovom Šugarju u području koje nije naseljeno, a 4,5 km jugoistočno od grada Karlobaga (slika 3_87).
studija utjecaja na okoliš

120

mjeseci i velikih kiša slive velika količina slatke vode. Jadranska magistralna cesta tu prolazi vrlo blizu obalne linije, samo kojih 20 m od mora. Na samom kopnu ne postoji prilaz kopnenim putem pa je do uzgajališta moguće doći samo morskim putem. U operativnom smislu bi se koristile luka Porat za snabdijevanje uzgajališta. To iz razloga što već postoji uzgajalište ispred Lukovog Šugara.

V4 Marasovka i Pećci

Budući položaj uzgajališta se nalazi sjeverno od luke Porat u Lukovom Šugarju u području koje nije naseljeno (slika 3_88).

Slika 3_88 Fotografija šireg prostora V4 lokacije

Iznad lokaliteta strme su obale koje se nastavljaju na brdovite obronke, istočno nalazi se Marasova glavica (561 m.n.m.), a zapadno Burna glavica (314 m.n.m.). Južnije uz obalu, smještene je uvala Pećci, zatim dolazi duga i neizražena Marasova punta (ispred koje se nalazi točan smještaj budućih uzgojnih kaveza) iza koje slijedi jače usječena uvala Marasovka sa strmim obroncima. Obala stmo ulazi u more tako da su dubine na udaljenosti od 170 m od kopna već preko 50 m. Na lokaciji do sada nije bilo nikakvih aktivnosti koje se odnose na marikulturu. Tijekom zimskih mjeseci i velikih kiša sliva se velika količina slatke vode. Na samom kopnu ne postoji prilaz kopnenim putem pa je do uzgajališta moguće doći samo morskim putem. Jadranska magistralna cesta tu prolazi dalje od obalne linije, oko 350 m od
mora i ne vidi se obalna crta. U operativnom smislu bi se koristile luka Porat za snabdijevanje uzgajališta, iz razloga sto već postoji uzgajalište ispred Lukovog Šugarja.

3.6.3 Stanovništvo
Na području Grada Senja, najbliža naselja uzgajalištima su Starigrad (5 km) u kojem živi 15, Prizna (3,2 km) u kojem živi 43 i Jablanac (5,7 km) u kojem živi 74 stanovnika.
Na području Općine Karlobag, najbliža naselja planiranim uzgajalištima su Karlobag (4,4 km) u kojem živi ukupno 464 i Lukovo Šugarje (3,2 km) u kojem živi ukupno 68 stanovnika.
Osnovna karakteristika Grada Senj i Općine Karlobag je rijetka naseljenost. Na području Grada Senja i Općine Karlobag ribarstvo nije tradicionalna djelatnost zbog posebne klime koju karakterizira jak vjetar. Ipak, u nekim naseljima poput Svetog Jurja i Lukovog stanovnici su se tradicionalno bavili ribolovom. Unatoč klimatskim uvjetima, na području Grada i Općine postoje uvjeti za ribarstvo što bi u budućnosti trebalo stimulirati. Marikultura također nije zastupljena, iako za to postoje dobri uvjeti.
3.7 POMORSKI PROMET U ZONI VELEBITSKOG KANALA I ODABRANIH MIKROLOKACIJA

Prema kartografskom prikazu Namjena i korištenje prostora – promet i elektroničke komunikacije iz Prostornog plana Ličko-senjske županije, uzgajališta se nalaze izvan važnih međunarodnih i unutarnjih plovnih puteva (slika 3_89).

Slika 3_89 Izvadak iz kartografskog prikaza Korištenje i namjena prostora – promet i elektroničke komunikacije iz Prostornog plana Ličko-senjske županije s ucrtanim lokacijama zahvata
3.7.1. Opis akvatorija Velebitskog kanala
Velebitski kanal je morski prostor izdužen u smjeru sjeverozapad – jugoistok, lagano zaobljen i koji obuhvaća prolaz između obale kopna, od uvale Žrnovica kraj Klenovice (Novog Vinodolskog) do ulaza u Novsko ždrilo, koje je ujedno i prolaz u Novigradsko more, s jedne strane, i od rta Glavina do rta Škuljica (otok Krk) s otocima Prvić, Grgur, Goli, Rab i Pag s druge strane. Dubine u cijelom Velebitskom kanalu su vrlo velike (od 60 m do preko 110 m) te je cijelom svojom duljinom plovani (slika 3_90).

Slika 3_90 Nautička karta (M 1:100 000)

S marinarnog stajališta, Velebitski kanal se može podijeliti u tri osnovna područja:

1. Sjeverni dio, koji obuhvaća obalu kopna od Tihog kanala do luke Jablanac te sjeveroistočne obale otoka Krka i Raba te otocu Prvić i Goli;
2. Srednji dio, koji obuhvaća obalu kopna od luke Jablanac do uvale Tribanj-Mandalina te sjeveroistočnu obalu otoka Paga te Ljubačka vrata s mostom;

U sjevernom dijelu kanala za orijentaciju dobro može poslužiti utvrda Nehaj koja se nalazi južno od luke Senj te mjesta Sv. Juraj i Starigrad. Od otoka u ovom dijelu ističu se otoci Prvić, Sv. Grgur i Goli otok te lako uočljivo brdo Kamenjak (410 m) na strmoj sjeveroistočnoj obali otoka Raba, s televizijskim tornjem na vrhu. U ovom dijelu obronci planinskog lanca uzduž obale na području Vinodolskog kanala postupno se spuštaju do obale te su većinom
pošumljeni i djelomično obrađeni. Od luke Novi Vinodolski nadalje, obala postaje strma i bez raslinja, a dubine se uz obalu povećavaju. Između luka Senj i Jablanac obala je vrlo strma. Orientaciju u srednjem dijelu kanala olakšavaju mjestost Jablanac i Karlobag. Na suprotnoj strani na otoku Pagu, ističe se brdo Vid visine 349 m i rt Zali sa svjetlom smještenim na bijelom valjkastom kuli na betonskom postolju visine 8 m. Svijetlo se nalazi na položaju sa zemljopisnim koordinatama X 374070,14027 Y 4942705,45093 s karakteristikom B Bl 3s, 9 m, 8M. U istom području nalazi se i hrid Žigljen (X 377442,85214 Y 4939120,86550) označen svjetlom karakteristike C Bl 2s, 12 m, 6M smještenim na crvenom bijelom valjkastom kuli s galerijom na crvenom postolju visine 7 m. Na strmom kamenom rtu Krištofor (X 378428,62246 Y 4927084,19730) nalazi se svjetlo karakteristika B Bl 5s, 62 m, 7M na bijelom osmerokutnom valjkastom kuli visine 6 m. Obala je i u ovome dijelu kanala strma i kamenita, bez raslinja, a dubine uz obalu su velike. Strmi obronci Velebita dobro se vide s mora. Na jugoistočnoj strani Velebita ističe se vrh Sveto brdo nadmorske visine 1 751 m. Uz njega još se ističe Paški most iznad prolaza Ljubačka vrata, brdo Lergova gradina na 268 m nadmorske visine iznad mjesta Vinjerac, otočić Paški Novak i Ražanac Veli sa svjetlom na bijelom valjkastom kuli sa stupom i galerijom visine 6 m (B Bl 5s, 16m, 9M, X 409061,59910 Y 4909150,07095), visoka zgrada mjesnog hotela 0,5 M sjeverozapadno od rta Stara kula, rt Pisak sa svjetlom (crvena kula sa stupom i galerijom visine 5m, C Bl 3s, 7m, 3M, X 418833,42897 Y 4903650,51003), mjestost Ražanac i Vinjerac te rt Baljenica na sjeveroistočnom ulazu u Novsko ždrilo sa svjetlom (crvena četverokutna kula visine 4m, karakteristike svjetla C Bl(2) 5s, 10m, 5M, na poziciji s geografskim koordinatama X422397,57610 Y4901199,68307). Obala kopna od uvale Tribanj-Mandalina do kanala Novsko ždrilo prepoznatljiva je po vrlo strmim obroncima Velebitskog lanca i dva suha kanjona: Velika i Mala Paklenica.

3.7.2. Pomorski promet u Velebitskom kanalu
Pomorski promet u Velebitskom kanalu je razmjerno slabog intenziteta i to posebice tijekom zimskih mjeseci kada osim redovnih pruga i lokalnih ribarskih brodica koje se ne udaljavaju bitno od obale, na moru nema drugih brodova i brodicu osim manjeg intenziteta brodica lucnih kapetanija i policije te lokalnog stanovništva. U ljetnim mjesecima promet je gušći zahvaljujući razmjerno brojnim nautičarima te brodovima i brodicama za šport i razonodu iako se ni taj promet ne može uspoređivati sa prometom u okolnim područjima. Promet brodova u Velebitskom kanalu, pored trajektinskih pruga sastoji se ponajprije od prometa ribarskih brodova i to u najvećem dijelu plivaričara, dok je promet drugih trgovacačkih brodova
praktično zanemariv. Posljednjih nekoliko godina na snazi je zabrana kočarenja pa te vrste ribarskih brodova u kanalu nema ili je zanemariv.

Plovidba ribarskih brodica u najvećoj mjeri odvija se uokolo ribarskih mjesta gdje su boravišta njihovih vlasnika i svojim intenzitetom također ne zahtijeva posebnu pažnju.

Najznačajniji promet javlja se u ljetnim mjesecima kad Velebitskim kanalom plove brojne turističke brodice i brodovi, nautičari sa svojim plovilima te veliki broj brodica namijenjenih sportu i razonodi. Plovidba ovih plovila uglavnom se odvija uz obalu, a najgušća je uokolo turističkih mjesta.
Lokacija V1 - Tvrduša i Trsina

Ova se lokacija nalazi više od 4 km sjeverno od trajektnog pristaništa od luka Stinica (Jablanac) na koordinatama X 372128,483246 Y 4958638,08231. Na ovom području nema naselja ni vikendaških kuća, ali postoji kozja staza do uvale Tvrduša. Sa sjeverne strane nalazi se uvala Vicić draga, a sa južne uvala Tvrduša. Uzgojni kavezi bit će postavljeni na zaravni između tih dviju uvala, na udaljenosti 300 m od obale (slika 3_80). Obala strmo ulazi u more ispod brežuljka Fortica (179,5 m.n.m.), te nalazimo dubine od 50 m na udaljenosti od 130 m od kopna. U području u neposrednoj blizini budućih kaveza za uzgoj ribe nema izrazitog pomorskog prometa osim plovidbe ribarskih brodova, odnosno plovidbe manjih ribarskih brodica mjesnog stanovništva i brodica za sport i razonodu. Plovidbeni putovi trgovačkih i drugih brodova pri prolasku ovim područjem u normalnim vremenskim prilikama, u pravilu će se protezati sredinom kanala.

Slika 3_91 Smještaj kaveza lokacije V1 - Tvrduša i Trsina

126
Lokacija V2 - Bilančevica i Bočarije Vele

Ova se lokacija nalazi malo manje od 4 km sjeverno od luke Prizna na koordinatama X377105,45811 Y4944466,95084. Na ovom području postoji naselje Bočak (2,5 km) koje ima i stalne stanovnike, te naselje Lomivrat (1,3 km) 10 kuća i naselje Bačvica (2,5 m). Sa sjeverne strane nalazi se uvala Bilančevica, a s južne uvala Bočarije vele. Uzgojni kavezi bit će postavljeni na zaravni između tih dviju uvala, na udaljenosti 300 metara od obale (slika 3_81). Posebno su dojmljive strme obale uvale Bilančevica koje strmo ulazi u more i dubine od 50 m na udaljenosti od 150 m od kopna. Plovidbeni putovi trgovačkih i drugih brodova pri prolasku ovim područjem u normalnim vremenskim prilikama, u pravilu će se protezati sredinom kanala.

Slika 3_92 Smještaj kaveza lokacije V2 - Bilančevica i Bočarije Vele
Lokacija V3 - Velika i Mala Črnika

Ova se lokacija nalazi 4,5 km jugoistočno od grada Karlobaga na koordinatama X389854,70682 Y4929290,84291. Na ovom području nema naselja ni vikendaških kuća. Postoji par kuća u mjestu Šikić – Dražica koje je udaljeno preko 1000m, u uvali Rođanka smještenoj na sjeveru. Sa sjeverne strane točnog lokaliteta nalazi se uvala Velika Črnika, a s južne uvala Mala Črnika. Uzgojni kavezi bit će postavljeni na zaravni između tih dviju uvala, na udaljenosti 300 m od obale (slika 3_82). Obala strmo ulazi u more te nalazimo dubine od 50 m na udaljenosti od 130 m od kopna. U području u neposrednoj blizini budućih kaveza za uzgoj ribe nema izrazitog pomorskog prometa osim plovidbe ribarskih brodova, odnosno plovidbe manjih ribarskih brodica mjesnog stanovništva i brodica za sport i razonodu. Plovidbeni putovi trgovačkih i drugih brodova pri prolasku ovim područjem u normalnim vremenskim prilikama, u pravilu će se protezati sredinom kanala.

![Slika 3_93 Smještaj kaveza lokacije V3 - Velika i Mala Črnika](image-url)
Lokacija V4 - Marasovka i Pečci

Ova se lokacija nalazi sjeverno od luke Porat u Lukovom Šugarju na koordinatama X393487,69287 Y4924982,86710. Na ovom području nema naselja ni vikendaških kuća. Sa sjeverne strane točnog lokaliteta nalazi se uvala Marasovka, a s južne uvala Pečci. Uzgojni kavezi bit će postavljeni na zaravni između tih dviju uvala, na dugoj i neizraženoj Marasovoj punti, na udaljenosti 300 m od obale (slika 3_83). Obala strmo ulazi u more te nalazimo dubine od 50 m na udaljenosti od 170 m od kopna. U području u neposrednoj blizini budućih kaveza za uzgoj ribe nema izrazitog pomorskog prometa osim plovidbe ribarskih brodova, odnosno plovidbe manjih ribarskih brodica mjesnog stanovništva i brodica za sport i razonodu. Plovidbeni putovi trgovačkih i drugih brodova pri prolasku ovim područjem u normalnim vremenskim prilikama, u pravilu će se protezati sredinom kanala. U operativnom smislu bi se koristila luka Porat za snabdijevanje uzgajališta, iz razloga što već postoji uzgajalište ispred Lukovog Šugarja. Isto se odnosi i na prethodnu lokaciju.

Slika 3_94. Smještaj kaveza lokacije V4 - Marasovka i Pečci
3.8. DINAMIKA RAZINE MORA. STRUJANJE MORA.

3.8.1. Mjerenje i analiza podataka razine mora i strujanja mora

3.8.1.1. Terensko mjerenje razine i strujanja mora

![Slika 3.95: Postavljeni uređaji na potencijalnim lokacijama uzgajališta V1-V4 u Velebitskom kanalu.](image)

3.8.1.2. Analiza mjerenih podataka

Studija utjecaja na okoliš

(a) Postaja V1 - Jablanac (kod uvala Trsina i Tvrđuša)
(b) Postaja V2 - Prizna (kod uvala Bilančevica i Bočarije Vele)
(c) Postaja V3 - Karlobag (kod uvala Velika i Mala Črnika)
(d) Postaja V4 - Lukovo Šugarje (kod uvala Marasovka i Pečci)

Slika 3.96: Mikrolokacije V1 - V4

Tablica 3.13: Karakteristike mjerenja na postajama V1-V4: dubina vodenog stupca i pozicija postaja, vrijeme mjerenja (dobri podaci) i interval mjerenja (u minutama).

<table>
<thead>
<tr>
<th>postaja</th>
<th>dubina (m)</th>
<th>lat</th>
<th>lon</th>
<th>vrijeme mjerenja</th>
<th>int (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>27.07</td>
<td>N44°45’23.61”</td>
<td>E14°53’16.16”</td>
<td>6.12.2019 - 10.1.2020.</td>
<td>15</td>
</tr>
<tr>
<td>V2</td>
<td>20.60</td>
<td>N44°37’53.90”</td>
<td>E14°57’12.74”</td>
<td>6.12.2019 - 10.1.2020.</td>
<td>15</td>
</tr>
<tr>
<td>V3</td>
<td>23.65</td>
<td>N44°29’42.82”</td>
<td>E15°6’54.06”</td>
<td>25.10.2019 - 5.12.2019.</td>
<td>15</td>
</tr>
</tbody>
</table>

Filtriranje niskih frekvencija signala provedeno je pomoću Butterworth filtera reda n=6 s normaliziranom graničnom ("cutoff") frekvencijom od f=1/48 h⁻¹. Time se iz signala odstranjaju svi plimni harmonici i fluktacije na višim frekvencijama, te izoliraju niže frekvencije os-
Studija utjecaja na okoliš cilacije vodene razine, temperature i strujanja inducirane meterološkim i ostalim ne-plimnim utjecajima.

Rezidualni kratkoperiodični signali oscilacije razine mora \(h_{HF} \) i morske struje \(\vec{v}_{HF} \) podvrgnuti su harmonijskoj analizi plimnih harmonika (Pawlowicz et al., 2002; Foreman, 1996; Godin, 1972), pri čemu je ekstrahiran plimni signal, procjenjene amplitude, procjenjene relativne faze za značajne harmonike i njihovi 95% intervali pouzdanosti ("confidence intervals").

Usmjerenost morske struje određena je pomoću analize glavnih komponenta (PCA- Principal Component Analysis; Emery and Thomson (1998)).
3.8.2. Oscilacije razine mora

Kretanje razine mora ima direktnе i indirektnе implikacije на uzgoj ribe. Direktnе implikacije vezane су uz neočekivane ekstremna povиšenja razine mora koja potencijano mogu utjecati на uzgojne jedinice, kao и на čitav hranidbeni proces. Indirektnо, dinamičko kretanje razine mora povezano je с jačinom strujnог polja,

Oscilacija razine mora daje važan uвид у интензитет плимног utjecaja на mjernom području koji je od pogлавite važnosti у generiranju плимне компоненте стрujnог polja. На формирањe mjerenог композитног сигнала h_T oscilacije razine mora, kao и на формирањe стujног полja, pored плиме utječu još и meterološki uvjeti poput put vlaka zraka и vjetra, те ostali не-плимни генератори који узрокују oscilaciju morske površine на dugim periodima.

Да bismo ispitali порijeklo razLIKE međу mjerenim signalima и odredili dominantne utjecaje koji generiraju oscilaciju razine, filtriranjem smo razdvojili iz mjerenog signala razine mora h_T signal h_{LF} koji obuhvaća oscilacije на dugim periodima и signal h_{HF} koji obuhvaća oscilacije на kratkim periodima, при чему je гранична frekvencija koja razdvaja dugoperiodično и kratkoperiodičko подручје $f = 1/48 \, h^{-1}$. Stoga, kratkoperiodični signal h_{HF} obuhvaćа и плимне oscilacije, dok dugoperiodički dio signala обухваћа meterološке и не-плимне utjecaje на skalama većim od 2 dana koji sudjeluju у формирањu rezidualne (поздинске) oscilacije razine.

3.8.2.1. Opće karakteristike oscilacije razine mora

Mjerenja dinamičkog kretanja razine provedena су на lokacijama V1-V4 u dva vremenska perioda (Таблица 3_14). Сензори за mjerenje hidростатског tlaka забиљегили су maksimalну осцилациju razine mora од -43 cm до 54 cm на postajama V3-V4 тijekom prvog mjernог perioda, te 38% већ раspоn (-60 cm до 74 cm) на postajama V1-V2 тijekom drugog mjernог perioda (Таблица 3_14). Oscilacija morske razine фазно je usklađena и podjedнаког je интеzитeta унутar istog mjernог perioda између lokacija V1 и V2, као и између locacija V3 и V4.

Већина mjerene varijance vezana je uz kratkoperiodičke oscilacije koje uključuju и плимне frekvencije: (63-67%) тijekom prvog mjерnог perioda, те približno 80% tijekom drugог mjernог perioda. Preostala varijanca je vezana uz direktnе и indirektnе utjecaje koji узрокују kretanje morske površine на dugим periodima poput meteroloških uvjeta, као и осталих не-плимних generatora (Сlike 3_97-3_99).

U prvom mjерном периодu забиљеген je већи udio varijance vezan uz kretanje morske povrshine на dugим periodima. Posebice značajno je rezidualno povišenje razine забиљено u periodu 12.11.-17.11.2019. koje je у спrezи с плимом узроковало поплаве у sjevernom dijelu Jadrana, од kojih je najglasovitija bila у Veneciji.
Tablica 3.14: Raspon i varijanca mjerenih i filtriranih signala oscilacije morske površine: $h_T =$ totalni mjereni signal, $h_{LF} =$ dugoperiodički dio signala (LF-low frequency, granična frekvencija $f=1/48 \text{ h}^{-1}$), $h_{HF} =$ kratkoperiodički dio signala (HF-high frequency, granična frekvencija $f=1/48 \text{ h}^{-1}$). (Napomena: Odstupanje suma varijanci LF-signala i HF-signala od varijance ukupnog signala (T) vezano je uz kovarijancu između LF i HF signala. U slučaju nezavisnosti, $\text{var}(h_{LF}) + \text{var}(h_{HF}) = \text{var}(h_T)$.

<table>
<thead>
<tr>
<th>Mjerni period</th>
<th>$\text{var}(h_T)$ (cm2)</th>
<th>$\text{var}(h_{LP})$ (cm2)</th>
<th>$\text{var}(h_{HP})$ (cm2)</th>
<th>$\text{var}(h_{HP})/\text{var}(h_T)$</th>
<th>min(h_T) (cm)</th>
<th>max(h_T) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postaja V3</td>
<td>25/10/19-05/12/19</td>
<td>318.51</td>
<td>118.58</td>
<td>37.23%</td>
<td>202.03</td>
<td>63.43%</td>
</tr>
<tr>
<td>Postaja V4</td>
<td>25/10/19-05/12/19</td>
<td>303.10</td>
<td>102.33</td>
<td>33.76%</td>
<td>201.92</td>
<td>66.62%</td>
</tr>
<tr>
<td>Postaja V1</td>
<td>06/12/19-10/01/20</td>
<td>517.13</td>
<td>103.79</td>
<td>20.07%</td>
<td>411.22</td>
<td>79.52%</td>
</tr>
<tr>
<td>Postaja V2</td>
<td>06/12/19-10/01/20</td>
<td>465.55</td>
<td>93.41</td>
<td>20.06%</td>
<td>370.63</td>
<td>79.61%</td>
</tr>
</tbody>
</table>

Ukupna varijabilnost morske razine bila je veća tijekom drugog mjernog perioda, što je posljedica povećanja varijance vezane uz kratkoperiodičke oscilacije. Povećanje varijance tijekom drugog mjernog perioda vezano je uz pojavu slobodnih oscilacija na periodu od $T=21h$ - osnovnog Jadanskog seša, koji se javlja nakon dugotrajnog puhanja juga, te se uspostavlja naglim prestankom juga i skretanjem na lebic, tramontanu ili buru. Period seša blizak je dnevnim plimnim frekvencijama, te se na njih superponira, povećavajući varijancu kratkoperiodičkog dijela signala oscilacije morske razine.

Harmonijskom spektrom analizom utvrđeno je da je energija signala dominantno raspoređena na dnevne ($f=1 \text{ cpd}$) i poludnevne ($f=2 \text{ cpd}$) frekvencije (Slika 3.101), što odgovara dominantnim plimnim frekvencijskim instancama u Jadranu. Razaznaje se statistički nesignifikantno povišenje energije na frekvencijama $f=3 \text{ cpd}$ i $f=4 \text{ cpd}$, što može biti posljedica pojave oscilacija na frekvencijama koji su multipli dominantnih dnevnih i/ili poludnevnih frekvencija uslijed distorzije plimnog vala (Slika 3.101). U drugom mjernom periodu zamjetna je znatna disperzija energije na dnevnim frekvencijama, kojoj doprinosi pojava osnovnog Jadranskog seša na periodu $T=21h$. Povećanje energije na frekvencijskoj instanci $T=21h$ zamjetno je i u prvom mjernom razdoblju, no u manjoj mjeri.

3.8.2.2. Plimom generirane oscilacije razine mora

Harmonijskom plimnom analizom kratkoperiodičnog dijela mjerenog signala h_{HF} na svim lokacijama utvrđeno je da je dominantni harmonik na dnevnoj frekvenciji K1, a na poludnevoj
Studija utjecaja na okoliš

M2. Harmonicima K1 i M2 korespondiraju najviše amplitude plimnog signala, pri čemu najviši omjer signala i šuma \((\text{signal-to-noise ratio})\) odgovara poludnevnom harmoniku M2 (Tablica 3.15). Mjerenje morskih razina nije dovoljne vremenske duljine da bi se mogli razdvojiti plimni konstituenti P1 i K1, te S2 i K2. Međutim, na osnovi poznatih podataka o odnosu konstituenata P1 i K1, te S2 i K2, napravljena je ekstrapolacija amplitude i faze za P1 i K2. To je bio neophodan korak pri harmonijskoj i spektralnoj analizi razine mora, jer je u suprotnom dolazi do velikog faznog i amplitudnog odstupanja u konstituentima K1 i S2 u odnosu na mjerenja na obližnjoj lokaciji Mali Lošinj (Tablica 3.15).

Procjenjeni harmonici su u skladu s plimnom dinamikom za sjeverni Jadran (Tablica 3.15). Određene plimne amplitude i faze slične su mjerenjima izvršenim na lokaciji Mali Lošinj (Janečkić and Kuzmić, 2005), s prisutnom slabom atenuacijom u amplitudi kod dnevnih harmonika, odnosno pojačanjem amplitude kod poludnevnih harmonika. Amplitude i faze harmonika preciznije su određene tijekom prvog mjernog perioda jer se je tijekom drugog mjernog perioda prisutnost sestara \((T=21h)\) u dva navrata sperponirala na vrijednosti dnevnih konstituenti.

Analiza ukazuje, da sintetizirani plimni signal tijekom prvog mjernog perioda u visokoj mjeri opisuje kratkoperioci dio \(h_{HP}\) (oko 89%) (Slika 3.103). To znači da se aproksimativno 56-60% varijance ukupnog signala oscilacije morske razine \(h_t\) može objasniti plimnim oscilacijama. Vremenske nizove mjerene tijekom drugog razdoblja karakterizira manji udio plimnog signala u opisu varijance kratkoperiocih dijela mjerenog signala \(h_{HP}\) (oko 52% vs prethodnih 89%). Razlog tome leži u pojaviji intenzivnijeg osnovnog Jadranскog seša u dva termina tijekom drugog mjernog perioda: 13.-18.12.2019. i 21.-27.12.2019 (Slika 3.102, Slika 3.103) koji doprinosi povećanju amplitude razine, a koja se pak stoga ne može u potpunosti objasniti plimnim signalom.
Slika 3.97: Postaja V3: (a) Mjerena razina mora \((h_T) \) i ekstrahirani dugoperiodički dio signala \((h_{LF}) \) (b) Kratkoperiodičke oscilacije koje uključuju i plimne oscilacije \((h_{HF}) \)

Slika 3.98: Postaja V4: (a) Mjerena razina mora \((h_T) \) i ekstrahirani dugoperiodički dio signala \((h_{LF}) \) (b) Kratkoperiodičke oscilacije koje uključuju i plimne oscilacije \((h_{HF}) \)
Slika 3.99: Postaja V1: (a) Mjerena razina mora (h_T) i ekstrahirani dugoperiođički dio signala (h_{LF}) (b) Kratkoperiođičke oscilacije koje uključuju i plimne oscilacije (h_{HF})

Slika 3.100: Postaja V2: (a) Mjerena razina mora (h_T) i ekstrahirani dugoperiođički dio signala (h_{LF}) (b) Kratkoperiođičke oscilacije koje uključuju i plimne oscilacije (h_{HF})
Slika 3.101: Spektralna gustoća snage mjerene razine mora h_T. Naznačene frekvencijske instancije 1, 2, 3, 4 označavaju broj ciklusa u danu (*cpd - clocks per day*). Crveno označena frekvencijska instanca odgovara periodu $T=21\text{h}$.
Tablica 3.15: Plimna analiza morske razine s obzirom na 7 glavnih konstituenata: amplituda, greška amplitude, Greenwich faza, greška Greenwich faze, i omjer signala i šuma (signal-to-noise ratio). Faza je relativna prema E 15°. Plimna analiza uključuje P1 i K2 plimne konstituente, pri čemu su amplitudni i fazni faktori za P1 i K2 izvedeni iz poznatog odnosa prema K1 i S2 konstituentu na lokaciji Mali Lošinj.

<table>
<thead>
<tr>
<th>Postaja</th>
<th>freq (1/h)</th>
<th>A</th>
<th>$A_{err}(cm)$</th>
<th>$g(°)$</th>
<th>$g_{err}(°)$</th>
<th>snr</th>
<th>var(h\textsubscript{TIDE})</th>
<th>var(h\textsubscript{TIDE})/ var(h\textsubscript{HP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3 K2</td>
<td>0.0387307</td>
<td>4.6624</td>
<td>1.564</td>
<td>56.48</td>
<td>15.87</td>
<td>8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0415526</td>
<td>4.1542</td>
<td>1.530</td>
<td>67.76</td>
<td>20.80</td>
<td>7.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0417807</td>
<td>12.5771</td>
<td>1.750</td>
<td>70.76</td>
<td>6.78</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0789992</td>
<td>1.8113</td>
<td>0.519</td>
<td>245.27</td>
<td>15.85</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0805114</td>
<td>10.4770</td>
<td>0.468</td>
<td>239.77</td>
<td>2.57</td>
<td>5e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0833333</td>
<td>5.8709</td>
<td>0.524</td>
<td>239.50</td>
<td>5.34</td>
<td>1.3e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V4 K2</td>
<td>0.0387307</td>
<td>4.6280</td>
<td>1.415</td>
<td>54.59</td>
<td>18.79</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0415526</td>
<td>4.1453</td>
<td>1.489</td>
<td>67.59</td>
<td>22.23</td>
<td>7.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0417807</td>
<td>12.5501</td>
<td>1.750</td>
<td>70.59</td>
<td>7.41</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0789992</td>
<td>1.7904</td>
<td>0.493</td>
<td>242.58</td>
<td>19.55</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0805114</td>
<td>10.4429</td>
<td>0.598</td>
<td>239.94</td>
<td>2.96</td>
<td>3e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0833333</td>
<td>5.8766</td>
<td>0.585</td>
<td>239.70</td>
<td>6.33</td>
<td>1e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 K2</td>
<td>0.0387307</td>
<td>2.6947</td>
<td>8.255</td>
<td>79.79</td>
<td>183.82</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0415526</td>
<td>4.3114</td>
<td>8.402</td>
<td>68.59</td>
<td>145.67</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0417807</td>
<td>13.0531</td>
<td>12.957</td>
<td>71.59</td>
<td>59.42</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0789992</td>
<td>1.5049</td>
<td>0.669</td>
<td>249.12</td>
<td>27.49</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0805114</td>
<td>10.0002</td>
<td>0.785</td>
<td>236.66</td>
<td>4.27</td>
<td>1.6e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0833333</td>
<td>5.9304</td>
<td>0.818</td>
<td>244.15</td>
<td>7.47</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2 K2</td>
<td>0.0387307</td>
<td>2.6201</td>
<td>8.125</td>
<td>83.77</td>
<td>146.69</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0415526</td>
<td>4.0755</td>
<td>8.736</td>
<td>68.23</td>
<td>137.14</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0417807</td>
<td>12.3389</td>
<td>11.456</td>
<td>71.23</td>
<td>56.80</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0789992</td>
<td>1.30</td>
<td>243.9</td>
<td>7.86</td>
<td>239.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0805114</td>
<td>9.4939</td>
<td>0.681</td>
<td>236.66</td>
<td>4.48</td>
<td>1.9e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0833333</td>
<td>5.7225</td>
<td>0.742</td>
<td>244.08</td>
<td>7.63</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1 K2</td>
<td>0.0387307</td>
<td>2.6201</td>
<td>8.125</td>
<td>83.77</td>
<td>146.69</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0415526</td>
<td>4.0755</td>
<td>8.736</td>
<td>68.23</td>
<td>137.14</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0417807</td>
<td>12.3389</td>
<td>11.456</td>
<td>71.23</td>
<td>56.80</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0789992</td>
<td>1.30</td>
<td>243.9</td>
<td>7.86</td>
<td>239.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0805114</td>
<td>9.4939</td>
<td>0.681</td>
<td>236.66</td>
<td>4.48</td>
<td>1.9e+02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0833333</td>
<td>5.7225</td>
<td>0.742</td>
<td>244.08</td>
<td>7.63</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V2 K2</td>
<td>0.0387307</td>
<td>4.48</td>
<td>49.1</td>
<td>4.36</td>
<td>61.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0415526</td>
<td>13.20</td>
<td>64.5</td>
<td>1.30</td>
<td>243.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0789992</td>
<td>8.76</td>
<td>239.9</td>
<td>4.52</td>
<td>244.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | 0.0833333 | 1.41 | 231.7 | | | | 139

Janeković and Kuzmić (2005)
Slika 3.102: Spektralna gustoća snage kratkoperioidičkog signala \(h_{HF} \) i rezidualnog signala \(h_{HF} - h_{TIDE} \) nakon ekstrakcije plimnog signala \(h_{TIDE} \). Naznačene frekvencijske instance 1, 2, 3 i 4 označavaju broj ciklusa u danu (cpd - clocks per day). Crveno označena frekencijska instanca odgovara periodu \(T=21h \).
Slika 3.103: Kratkoperiodički signal \(h_{HF} \) i sintetizirani plimni signal elevacije \(h_{TIDE} \). Sintetizirani signal je konstituiran pomoću 01, P1, K1, N2, M2, S2 i K2 glavnih plimnih konstituenata.
3.8.3. Strujanje mora

Na postajama V1-V4 u dva vremenska perioda mjereni su vertikalni profili strujanja mora. Uz plimne utjecaje, ne-plimni doprinosi strujanju poput meterološkim uvjetima generiranog strujanja (vjetar, tlak), pridnenih turbulencija i opstrukcija toka, termohaline cirkulacije, kao i doprinosi ne-plimnih oscilacija morske površine mogu značajno doprinjeti ukupnom transportu vodene mase.

Plimne doprinose strujanju karakterizira periodičko (oscilatorno) mijenjanje smjera i brzine struje na dominanto dnevnim i poludnevnim vremenskim skalama, dok ne-plimni doprinosi su u većini slučajeva usmjerenog toka. Za disperziju efluenata akvakulture bitna su oba tipa doprinosa strujanju, pri čemu rezidualna usmjerenost strujnog toka na dužim vremenskim skalama definira generalni smjer transporta efluenata od izvora emisije (kaveza), dok oscilatorno plimno strujanje doprinosi okolnom horizontalnom raspršenju.

Kako bismo izdvojili i procijenili plimne i ne-plimne doprinose, kao i kod analize razine mora, iz ukupnog mjerenog strujnog profila \vec{v}_T izdvojili smo: (i) dio strujnog toka koji uključuje dnevne i poludnevne plimne oscilacije (\vec{v}_{HF}) od (ii) strujanja vodenog procesima na dužim vremenskim skalama (\vec{v}_{LF}). Granična frekvencija koja razdvaja dugoperiodično (\vec{v}_{LF}) i kratkoperiodično (\vec{v}_{HF}) frekvencijsko područje strujanja je $f=1/48 \ h^{-1}$, istovjetno kao i kod analize dinamike kretanja morske razine.

Strujanje mora definirano je strujnim vektorom \vec{v}_T kojeg karaterizira brzina i smjer. Brzina i smjer su varijable koje iskazuju vertikalnu (po slojevima) i vremensku promjenjivost, te je stoga provedena statistička analiza za svaku od postaja kako bi se mogle iskazati dominantne karakteristike mjerenog strujnog toka.
3.8.3.1. *Strujanje mora na lokaciji Velika i Mala Črnika*

Opće karakteristike brzine strujanja

Mjereni podaci ukazuju na ujednačenu ulogu ne-plimnih i plimnih utjecaja u formiranju strujnog polja. Naime, u mjerenim podacima izostaje, tj. maskirana je, izrazita periodičnost i pravilnost promjene u intezitetu brzine i smjeru strujanja na periodima nižim od dana (Slika 3.105 (a), Slika 3.106), koja je inače vidljiva kod plimnih strujanja u Jadranu. Kada iz ukupnog mjerenog strujnog profila \vec{v}_T izdvojimo dio strujnog toka koji uključuje dnevne i poludnevne plimne oscilacije (\vec{v}_{HF}) od strujanja vođenog procesima na dužim vremenskim skalama (\vec{v}_{LF}) (Slike 3.105 (b) i (c)), pravilne oscilacije postaju vidljive, ali ne jasno fromirane (Slika 3.105 (c)). To sugerira na djelomičnu disipaciju plimne energije na frekvencije bliske dominatnim dnevnim i pludnevnim harmonicima, kao i na potencijalno dodatne ne-plimne generatore energije u tom dijelu spektra.

Strujanje na dužim vremenskim skalama od dva dana karakterizira prisutnost u čitavom vertikalnom stupcu (Slika 3.105 (b)), ali i atenuacija jačine s porastom dubine (Slika 3.104, Slika 3.106). Mjerni period karakteriziralo je dugotrajno puhanje juga, što se u strujnom zapisu reflektira kao veća zastupljenost sjeverozapadnih smjerova vektora strujanja (Slika 3.105 (b)). Doprinos sjeverozapadnom smjeru kretanja na dugim skalama dolazi i od opće ciklonalne cirkulacije u Jadranu koja transportira slanu levantinsku vodu u Jadran uz istočnu obalu. Transport vođene mase u Jadranu uglavnom je pod utjecajem gradijentskih struja, ali i sezonskih promjena vjetra - ljeti prevladava NW vjetar (maestral) koji pojačava izlazni tok morske vode u površinskom sloju iz Jadranja, dok zimi na strujanje utječe jugo, koji pojačava ulazni tok morske vode.

Maksimalne brzine morske struje po slojevima mjerene ADCP uređajem dosezale su vrijednosti od 21.12 cm s^{-1} do 31.20 cm s^{-1}. Zbog oscilatornog karaktera plimnog strujanja srednje vrijednosti brzine značajno su manjeg inteziteta i kreću se u rasponu od 3.62 cm s^{-1} do 6.27 cm s^{-1} (Tablica 3.16), što lokaciju svrstava u kategoriju umjerene razine strujne cirkulacije.
Slika 3.104: Brzina strujnog vektora (\vec{v}_T) mjerena na Postaji V3.

Tablica 3.16: Baznična statistika vezana uz mjereni strujni tok \vec{v}_T na Postaji V3. Smjer struje je prema oceanografskoj konvenciji: istočni=0°, sjeverni=90°, zapadni=180°, južni=270°. (Napomena: Odstupanje suma varijanci LF-signala i HF-signala od varijance ukupnog signala (T) vezano je uz kovarijancu između LF i HF signala. U slučaju nezavisnosti, var(\vec{v}_{HF})+var(\vec{v}_{LF})=var(\vec{v}_T)).

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>residualni varijanca strujnog vektora \vec{v}_T</th>
<th>varijanca varijanca strujnog vektora \vec{v}_{LF}</th>
<th>varijanca varijanca strujnog vektora \vec{v}_{HF}</th>
<th>srednja brzina strujnog vektora \vec{v}</th>
<th>max. brzina strujnog vektora \vec{v}_T</th>
<th>stand. dev. brzine strujnog vektora \vec{v}_T</th>
<th>stabilnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.53</td>
<td>2.76 / 120.38</td>
<td>56.42</td>
<td>26.17</td>
<td>30.09</td>
<td>6.27</td>
<td>31.20</td>
<td>4.97</td>
</tr>
<tr>
<td>6.53</td>
<td>2.18 / 121.08</td>
<td>51.77</td>
<td>25.99</td>
<td>25.53</td>
<td>5.79</td>
<td>26.55</td>
<td>4.79</td>
</tr>
<tr>
<td>8.53</td>
<td>1.55 / 123.09</td>
<td>50.78</td>
<td>27.68</td>
<td>22.65</td>
<td>5.53</td>
<td>25.52</td>
<td>4.75</td>
</tr>
<tr>
<td>10.53</td>
<td>1.04 / 127.34</td>
<td>48.72</td>
<td>26.95</td>
<td>20.87</td>
<td>5.37</td>
<td>24.63</td>
<td>4.58</td>
</tr>
<tr>
<td>12.53</td>
<td>0.61 / 132.89</td>
<td>45.37</td>
<td>25.39</td>
<td>19.19</td>
<td>5.18</td>
<td>24.07</td>
<td>4.35</td>
</tr>
<tr>
<td>14.53</td>
<td>0.40 / 138.78</td>
<td>40.85</td>
<td>22.19</td>
<td>17.92</td>
<td>4.88</td>
<td>24.03</td>
<td>4.15</td>
</tr>
<tr>
<td>16.53</td>
<td>0.47 / 143.89</td>
<td>34.57</td>
<td>17.29</td>
<td>16.66</td>
<td>4.43</td>
<td>23.66</td>
<td>3.90</td>
</tr>
<tr>
<td>18.53</td>
<td>0.52 / 145.70</td>
<td>29.44</td>
<td>13.62</td>
<td>15.27</td>
<td>4.06</td>
<td>22.37</td>
<td>3.64</td>
</tr>
<tr>
<td>20.53</td>
<td>0.53 / 141.80</td>
<td>23.81</td>
<td>10.39</td>
<td>12.94</td>
<td>3.62</td>
<td>21.12</td>
<td>3.31</td>
</tr>
</tbody>
</table>
Procjena po slojevima srednje brzine strujanja, konstantne rezidualne brzine i varijance strujnog vektora na Postaji V3.

Vertikalni profil brzine strujanja

Vertikalno, zamjećujemo postepeni pad srednjih brzina, od srednje brzine 6.27 cm s⁻¹ na površini do 3.62 cm s⁻¹ u pridnenom sloju - što iznosi 42% (Slika 3.107). Pad srednjih brzina je do dubine od 12m blag, a nakon toga strmiji. Slabljene utjecaja vjetra i ostalih procesa na granici more-atmosfera reflektira i u smanjenju vektora rezidualnog strujanja koje je u pridnenom sloju manje od 1 cm s⁻¹. Profil pada inteziteta rezidualne struje je obratan od srednjih brzina - u gornjem sloju nešto je strmiji, dok u donjem sloju poprima skoro uniformnu vrijednost.

Nažalost, vertikalno, strujanje u najgornjem površinskom sloju (0-4m) mjereno ADCP mjernim uređajem nije bilo moguće uvrstiti u analizu zbog visoke nepouzdanosti mjerenja (pojačavanje jakosti signala uz površinu zbog refleksije i pojačanja ”sidelobe” energije). No, valja napomenuti da površinske struje mogu dosetati, pa čak biti i intezivnije, od maksimalnih struja određenih u ovdje mjerenom gornjem sloju.

Vremenska variabilnost brzine strujanja

Vremenska variabilnost brzine strujnog toka izražava se varijancom mjerenih vremenskih nizova brzine, odnosno standardnom devijacijom. Vertikalna raspodjela standardne devijacije brzine strujnog toka slijedi vertikalni raspored srednjih brzina strujnog toka i kreće se u rasponu 3.31-4.97 cm s⁻¹ (Tablica 3.16).
Studija utjecaja na okoliš

Smjer strujanja mora

Smjer strujnog toka na lokaciji mjerenja dominantno se pruža u smjeru sjeverozapad-jugoistok (Slika 3.106, Slika 3.108 (a) - panel lijevo). Gruba procjena samo s obzirom na osam glavnih smjerova (N, NE, E, SE, S, SW, W, NW) korespondentno tome definira i iznose najvećih brzina srujnog toka u sjeverozapadnim i jugoistočnim smjerovima (Slika 3.108 (a) - panel desno). Određena asimetrija prisutna u distribuciji zastupljenosti smjerova i srednjih brzina po smjerovima kod analize ukupnog mjerenog signala \(\vec{v}_T \) gubi se filtriranjem rezidualnog strujnog toka \(\vec{v}_{LP} \), odnosno uklanjanjem ne-plimnih doprinosa strujanju (Slika 3.108 (b). Asimetrija je dominantnije prisutna u gornjim slojevima, ukazujući na potencijalni utjecaj vjetrovnih dinamike i atmosferskih procesa na proces strujanja.

![Slika 3.108: Postaja V3: frekvencija pojavljivanja strujnog smjera (lijevo; %) i srednja apsolutna brzina (desno; \(cm\ s^{-1} \)) s obzirom na osam glavnih smjerova](image.png)
Tablica 3_17: PCA analiza mjerenog strujnog zapisa na Postaji V3 (Konvencija smjerova struja: istočna=0°, sjeverna=90°, zapadna±180°, južna=-90°)

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>ukupna var. (cm² s⁻²)</th>
<th>glavna os var. (%)</th>
<th>objašnjeno (cm² s⁻²)</th>
<th>sporedna os var. (%)</th>
<th>objašnjeno (cm² s⁻²)</th>
<th>omjer var. (%)</th>
<th>glavni smjer (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.53</td>
<td>56.42</td>
<td>54.83</td>
<td>97.18</td>
<td>1.59</td>
<td>2.82</td>
<td>0.03</td>
<td>-53.60</td>
</tr>
<tr>
<td>6.53</td>
<td>51.77</td>
<td>50.25</td>
<td>97.07</td>
<td>1.52</td>
<td>2.93</td>
<td>0.03</td>
<td>-53.62</td>
</tr>
<tr>
<td>8.53</td>
<td>50.78</td>
<td>49.37</td>
<td>97.23</td>
<td>1.41</td>
<td>2.77</td>
<td>0.03</td>
<td>-53.40</td>
</tr>
<tr>
<td>10.53</td>
<td>48.72</td>
<td>47.43</td>
<td>97.35</td>
<td>1.29</td>
<td>2.65</td>
<td>0.03</td>
<td>-52.61</td>
</tr>
<tr>
<td>12.53</td>
<td>45.37</td>
<td>44.22</td>
<td>97.48</td>
<td>1.14</td>
<td>2.52</td>
<td>0.03</td>
<td>-51.97</td>
</tr>
<tr>
<td>14.53</td>
<td>40.85</td>
<td>39.84</td>
<td>97.54</td>
<td>1.00</td>
<td>2.46</td>
<td>0.03</td>
<td>-51.34</td>
</tr>
<tr>
<td>16.53</td>
<td>34.57</td>
<td>33.75</td>
<td>97.63</td>
<td>0.82</td>
<td>2.37</td>
<td>0.02</td>
<td>-50.83</td>
</tr>
<tr>
<td>18.53</td>
<td>29.44</td>
<td>28.72</td>
<td>97.56</td>
<td>0.72</td>
<td>2.44</td>
<td>0.02</td>
<td>-49.94</td>
</tr>
<tr>
<td>20.53</td>
<td>23.81</td>
<td>23.17</td>
<td>97.30</td>
<td>0.64</td>
<td>2.70</td>
<td>0.03</td>
<td>-49.32</td>
</tr>
</tbody>
</table>

Vremenska varijabilnost strujanja mora

Zajednička vremenska varijabilnost ne samo brzine, već i smjera strujnog toka izražava se varijancom vremenskog niza mjerenog strujnog vektora var(\vec{v}_T) (Tablica 3_16, Tablica 3_17, Slika 3_107). Varijabilnost smjera strujnog toka poglavito je važna ukoliko značajnu komponentu vodenog toka čini gibanje oscillatornog karaktera poput plimnih struja.

PCA analizom ukupnog signala strujnog toka \vec{v}_T – \tilde{\vec{v}}_T procjenjeni su glavni smjerovi (osi) distribucije varijance signalizira strujanja mora (Tablica 3_17). Usmjesenost strujnog toka je gotovo bipolarna (Slika 3_109 (a)) i definirana batimetrijskim i morfološkim kontekstom lokacije (Slika 3_96 (c)). Inklinacija glavne osi je u rasponu od -49.3° do -53.6° u odnosu na x-os (Slika 3_109 (c)). Postotak varijance objašnjen glavnom osi izrazito je velik u čitavom vertikalnom stupcu (97-98%).

Sukladno očekivanjima vertikalna distribucija ukupne varijance prati raspodjelu srednjih struja (Slika 3_107, Tablica 3_17, Slika 3_109 (b)), tj. varijabilnost (varijanca) strujnog toka pada s dubinom. Varijanca ukupnog strujanja \vec{v}_T podjednako je kroz vertikalni stupac raspoređena na varijancu strujanja \vec{v}_{HF} i varijancu strujanja \vec{v}_{LF}, što generira razliku u jakosti varijance između var(\vec{v}_T) i \left[\begin{array}{l}\text{var}(\vec{v}_{HF}) \text{ i } \text{var}(\vec{v}_{LF}) \end{array}\right]$ (Slike 3_109 (c) i (d)). PCA analiza \vec{v}_{HF} komponente signalizira ukazuje na podudaranje glavnih osi distribucije strujnog toka s var(\vec{v}_T).
Slika 3.109: Distribucija varijance strujanja na Postaji V3 prema PCA-analizi: (a) elipse određene glavnim osima i inklinacijom izračunatim iz mjerenog signala \vec{v}_T; (b) vertikalni prikaz elipsi po slojevima; (c) glavni smjerovi izračunati iz mjerenog signala \vec{v}_T; (d) glavni smjerovi izračunati iz filtriranog kratkoperioidičkog signala \vec{v}_{HF} koji uključuje i plimne oscilacije. Kod PCA analize ekstrahirana je srednja vrijednost iz \vec{v}_T signala. (Napomena: srednja vrijednost, tj. rezidualno strujanje vezano uz \vec{v}_{HF} nije signifikantno različito od 0).
Studija utjecaja na okoliš

Rezidualno konstantno srednje strujanje

Rezidualno konstantno strujanje \vec{v}_T u donjem sloju (13-21m) je tijekom mjernog perioda bilo zamjetno nižeg inteziteta ($0.40 - 0.61 \text{ cm s}^{-1}$) nego u gornjem sloju (1.04-2.76 cm s^{-1}) (Slika 3.110, Slika 3.107, Tablica 3.16). No, valja primjetiti da strujanje u najgornjem površinskom sloju (0-4m) može biti još jačeg inteziteta, ali ga zbog visoke nepouzdanosti mjerenja u tom sloju nije bilo moguće uvrstiti u analizu. Dodatno, analiza ukazuje da generator rezidualnog kretanja je dugoperiódski strujni tok: rezidualne vrijednosti ukupnog signala \vec{v}_T i \vec{v}_{LF} su skoro identične (Slika 3.110 (a), (b)).

![Diagram](a) \vec{v}_T
![Diagram](b) \vec{v}_{LF}

Slika 3.110: Rezidualno konstantno strujanje na Postaji V3: (a) izračunato iz signala \vec{v}_T (b) izračunato iz filtriranog dugoperiódskog signala \vec{v}_{LF}.

150
3.8.3.2. Strujanje mora na lokaciji Marasovka i Pećci

Opće karakteristike brzine strujanja

Mjerenja na postaji V4 provedena su u paralalno kada i mjerenja na postaji V3. Sukladno mjerenjima na postaji V3, mjereni podaci na postaji V4 ukazuju na ujednačenu ulogu neplimnih i plimnih utjecaja u formiranju strujnog polja. Naime, u mjerenim podacima izostaje izrazita periodičnost i pravilnost promjene u intezitetu brzine i smjera strujanja na periodima nižim od dana (Slika 3.112 (a), Slika 3.113), koja je inače vidljiva kod plimnih strujanja u Jadranu. Kada iz ukupnog mjerenog strujnog profila \(\vec{v}_T \) izdvojimo dio strujnog toka koji uključuje dnevne i poludnevne plimne oscilacije (\(\vec{v}_{HF} \)) od strujanja vođenog procesima na dužim vremenskim skalama (\(\vec{v}_{LF} \)) (Slike 3.112 (b) i (c)), pravilne oscilacije postaju vidljive, ali ne jasno formirane (Slika 3.112 (c)). To ukazuje na djelomičnu disipaciju plimne energije na frekvencije bliske dominantnim dnevnim i pludnevnim harmonicima, kao i na potencijalno dodatne ne-plimne generatore energije u tom dijelu spektra.

Strujanje na dužim vremenskim skalama od dva dana, kao i kod postaje V3, karakterizira prisutnost u čitavom vertikalnom stupcu (Slika 3.112 (b)), ali i atenuacija jačine s porastom dubine (Slika 3.111, Slika 3.113). Različitost u odnosu na postaju V3 iskazuje se u jačoj zastupljenosti jugoistočnih smjerova toka, odnosno slabijoj zastupljenosti strujanja u sjeverozapadnom smjeru (Slike 3.106 i 3.113, Slike 3.105(b) i 3.112(b)), što je poglavito vidljivo u početnom periodu mjerenja.

Maksimalne brzine morske struje po slojevima mjerene ADCP uređajem dosezale su vrijednosti od 20.37 cm s\(^{-1}\) do 25.94 cm s\(^{-1}\). Srednje vrijednosti brzine značajno su manje inteziteta i kreću se u rasponu od 3.36 cm s\(^{-1}\) do 5.24 cm s\(^{-1}\) (Tablica 3.18). Time lokacija V4 skazuje neznatno manju razinu strujne cirkulacije u odnosu na lokaciju V3. Razlika se više iskazuje u gornjem sloju do 13 m, dok su srednje vrijednosti brzine strujanja u donjem sloju usklađenije, što je potencijalno posljedica različitog stupnja izloženosti mikrolokacije vjetrovoj dinamici i atmosferskim procesima.
Slika 3.111: Brzina strujnog vektora (\vec{v}_T) mjerena na Postaji V4.

Slika 3.112: Smjer strujanja na Postaji V4
Slika 3.113: Satne vrijednosti strujnog toka \vec{v}_T na Postaji V4

Tablica 3.18: Bazična statistika vezana uz mjereni strujni tok \vec{v}_T na Postaji V4. Smjer struje je prema oceanografskoj konvenciji: istočni=0°, sjeverni=90°, zapadni=180°, južni=270°. (Napomena: Odstupanje suma varijanci LF-signala i HF-signala od varijance ukupnog signala (T) vezano je uz kovarijancu između LF i HF signala. U slučaju nezavisnosti, $\text{var}(\vec{v}_{HF})+\text{var}(\vec{v}_{LF})=\text{var}(\vec{v}_T)$).

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>residualni vekt. (brzina/smjer) (m/s)</th>
<th>varijanca \vec{v}_T (cm² s⁻²)</th>
<th>varijanca \vec{v}_{LF} (cm² s⁻²)</th>
<th>varijanca \vec{v}_{HF} (cm² s⁻²)</th>
<th>srednja brzina strujnog vektora (cm/s)</th>
<th>max. brzina strujnog vektora (cm/s)</th>
<th>stand. dev. brzine strujnog vektora (cm/s)</th>
<th>stabilnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.43</td>
<td>1.00 / 334.31</td>
<td>41.70</td>
<td>14.66</td>
<td>25.71</td>
<td>5.10</td>
<td>25.94</td>
<td>4.08</td>
<td>0.20</td>
</tr>
<tr>
<td>9.43</td>
<td>1.74 / 322.63</td>
<td>40.50</td>
<td>16.16</td>
<td>23.19</td>
<td>5.18</td>
<td>23.54</td>
<td>4.08</td>
<td>0.34</td>
</tr>
<tr>
<td>11.43</td>
<td>2.14 / 319.49</td>
<td>39.83</td>
<td>18.16</td>
<td>20.83</td>
<td>5.24</td>
<td>22.94</td>
<td>4.12</td>
<td>0.41</td>
</tr>
<tr>
<td>13.43</td>
<td>2.23 / 319.91</td>
<td>39.14</td>
<td>19.73</td>
<td>18.50</td>
<td>5.14</td>
<td>22.24</td>
<td>4.21</td>
<td>0.43</td>
</tr>
<tr>
<td>15.43</td>
<td>2.06 / 320.59</td>
<td>36.80</td>
<td>20.13</td>
<td>15.70</td>
<td>4.86</td>
<td>22.77</td>
<td>4.18</td>
<td>0.42</td>
</tr>
<tr>
<td>17.43</td>
<td>1.75 / 318.79</td>
<td>31.62</td>
<td>17.43</td>
<td>13.02</td>
<td>4.37</td>
<td>21.43</td>
<td>3.94</td>
<td>0.40</td>
</tr>
<tr>
<td>19.43</td>
<td>1.49 / 318.07</td>
<td>28.72</td>
<td>15.03</td>
<td>12.55</td>
<td>4.15</td>
<td>21.57</td>
<td>3.70</td>
<td>0.36</td>
</tr>
<tr>
<td>21.43</td>
<td>1.21 / 317.91</td>
<td>25.22</td>
<td>12.00</td>
<td>12.30</td>
<td>3.83</td>
<td>21.37</td>
<td>3.47</td>
<td>0.32</td>
</tr>
<tr>
<td>23.43</td>
<td>1.06 / 315.27</td>
<td>19.83</td>
<td>8.26</td>
<td>10.99</td>
<td>3.36</td>
<td>20.37</td>
<td>3.11</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Vertikalni profil brzine strujanja

Vertikalno, zamjećujemo pad srednjih brzina, od srednjih brzina 5.10-5.24 cm s\(^{-1}\) pri površini do 3.36 cm s\(^{-1}\) u pridnenom sloju - što iznosi 34% (Slika 3_114). Srednje brzine su do 13m skoro uniformne, a nakon toga pad je strmiji, slično kao na postaji V3. Rezidualni vektor nema linearu formu, već maksimalnu vrijednost poprima na približnoj dubini od 13m. Srednje brzine strujanja marginalno su niže u odnosu na srednje brzine strujanja na lokaciji V3.

Nažalost, vertikalno, strujanje u najgornjem površinskom sloju mjereno ADCP mjernim uređajem nije bilo moguće uvrstiti u analizu zbog visoke nepouzdanosti mjerenja. No, površinske struje uslijed vjetrovne dinamike mogu biti intezivnije od struja određenih u ovdje mjerenim višim slojevima.

Vremenska varijabilnost brzine strujanja

Vremenska varijabilnost brzine strujnog toka izražava se varijancom mjerenih vremenskih nizova brzine, odnosno standardnom devijacijom. Vertikalna raspodjela standardne devijacije brzine strujnog toka slijedi vertikalni raspored srednjih brzina strujnog toka i kreće se u rasponu 3.11-4.21 cm\(^{1}\) s\(^{-1}\) (Tablica 3_18). Vremenska varijabilnost je nešto niža u odnosu na lokaciju V3.
Studiija utjecaja na okoliš

Smjer strujanja mora

Smjer strujnog toka na lokaciji mjerenja dominantno se pruža u smjeru sjeverozapad-jugoistok (Slika 3_113, Slika 3_115 (a) - panel lijevo). Gruba procjena samo s obzirom na osam glavnih smjerova (N, NE, E, SE, S, SW, W, NW) korespondentno tome definira i iznose najvećih brzina srujnog toka u sjeverozapadnim i jugoistočnim smjerovima (Slika 3_115 (a) - panel desno). Određena asimetrija prisutna u distribuciji zastupljenosti smjerova kod analize ukupnog mjerenog signala \vec{v}_T gubi se filtriranjem rezidulanog strujnog toka \vec{v}_{LP}, odnosno uklanjanjem ne-plimnih doprinosa strujanju (Slika 3_115 (b)). Asimetrija je dominatnije prisutna u gornjim slojevima, s usmjerenošću prema jugoistoku, dok je na postaji V3 asimetrija prisutna u suprotnom - sjeverozapadnom smjeru.

![Ukupni mjereni signal \vec{v}_T](image1)

(a) Ukupni mjereni signal \vec{v}_T

![Filtrirani kratkoperioci signal \vec{v}_{HF} koji uključuje i plimne oscilacije](image2)

(b) Filtrirani kratkoperioci signal \vec{v}_{HF} koji uključuje i plimne oscilacije

Slika 3_115: Postaja V4: frekvencija pojavljivanja strujnog smjera (lijevo; %) i srednja apsolutna brzina (desno; cm s$^{-1}$) s obzirom na osam glavnih smjerova.
Tablica 3.19: PCA analiza mjerenog strujnog zapisa na Postaji V4 (Konvencija smjerova struja: istočna=0°, sjeverna=90°, zapadna±180°, južna=-90°)

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>ukupna var. (cm² s⁻²)</th>
<th>glavna os var. (cm² s⁻²)</th>
<th>objašnjeno (%)</th>
<th>sporedna os var. (cm² s⁻²)</th>
<th>objašnjeno (%)</th>
<th>omjer var. (%)</th>
<th>glavni smjer (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.43</td>
<td>41.70</td>
<td>39.35</td>
<td>94.37</td>
<td>2.35</td>
<td>5.63</td>
<td>0.06</td>
<td>-45.41</td>
</tr>
<tr>
<td>9.43</td>
<td>40.50</td>
<td>38.51</td>
<td>95.08</td>
<td>1.99</td>
<td>4.92</td>
<td>0.05</td>
<td>-45.83</td>
</tr>
<tr>
<td>11.43</td>
<td>39.83</td>
<td>38.34</td>
<td>96.26</td>
<td>1.49</td>
<td>3.74</td>
<td>0.04</td>
<td>-44.90</td>
</tr>
<tr>
<td>13.43</td>
<td>39.14</td>
<td>37.82</td>
<td>96.62</td>
<td>1.32</td>
<td>3.38</td>
<td>0.03</td>
<td>-44.41</td>
</tr>
<tr>
<td>15.43</td>
<td>36.80</td>
<td>35.68</td>
<td>96.94</td>
<td>1.13</td>
<td>3.06</td>
<td>0.03</td>
<td>-43.60</td>
</tr>
<tr>
<td>17.43</td>
<td>31.62</td>
<td>30.58</td>
<td>97.73</td>
<td>1.04</td>
<td>3.27</td>
<td>0.03</td>
<td>-43.19</td>
</tr>
<tr>
<td>19.43</td>
<td>28.72</td>
<td>27.84</td>
<td>96.94</td>
<td>0.88</td>
<td>3.06</td>
<td>0.03</td>
<td>-43.11</td>
</tr>
<tr>
<td>21.43</td>
<td>25.22</td>
<td>24.41</td>
<td>96.77</td>
<td>0.81</td>
<td>3.23</td>
<td>0.03</td>
<td>-43.45</td>
</tr>
<tr>
<td>23.43</td>
<td>19.83</td>
<td>19.10</td>
<td>96.31</td>
<td>0.73</td>
<td>3.69</td>
<td>0.04</td>
<td>-43.67</td>
</tr>
</tbody>
</table>

Vremenska varijabilnost strujanja mora

Vremenska varijabilnost ne samo brzine, već i smjera strujnog toka izražava se zajednički varijancom vremenskog niza mjerenog strujnog vektora var(\vec{v}_T) (Tablica 3.18, Tablica 3.19, Slika 3.114). Varijabilnost smjera strujnog toka poglavito je važna ukoliko značajnu komponentu vodenog toka čini gibanje oscillatornog karaktera poput plimnih struja.

PCA analizom ukupnog signala strujnog toka \vec{v}_T − \vec{\mu}_T procjenjeni su glavni smjerovi (osi) distribucije varijance signala strujanja mora (Tablica 3.19). Usmjerenost strujnog toka je, kao i na postaji V3, gotovo bipolarna (Slika 3.116 (a)) i definirana batimetrijskim i geomorfološkim kontekstom (Slika 3.96 (d)). Inklinacija glavne osi je u rasponu od -43.1° do -45.8° u odnosu na x-os (Slika 3.116 (c)). Postotak varijance objašnjen glavnom osi velik je u čitavom vertikalnom stupcu (94-97%).

Sukladno očekivanjima vertikalna distribucija ukupne varijance prati raspodjelu srednjih struja (Slika 3.114, Tablica 3.19, Slika 3.116 (b)), tj. varijabilnost (varijanca) strujnog toka pada s dubinom. Varijanca ukupnog strujanja \vec{v}_T podjednako je kroz vertikalni stupac raspoređena na varijancu strujanja \vec{v}_{HF} i varijancu strujanja \vec{v}_{LF}, što generira razliku u jakosti varijance između var(\vec{v}_T) i var(\vec{v}_{HF}) (Slike 3.116 (c) i (d)). PCA analiza \vec{v}_{HF} komponente signala ukazuje na podudaranje glavnih osi distribucije strujnog toka s var(\vec{v}_T).
Slika 3.116: Distribucija varijance strujanja na **Postaji V4** prema PCA-analizi: (a) elipse određene glavnim osima i inklinacijom izračunatim iz mjerenog signala \vec{v}_T; (b) vertikalni prikaz elipsi po slojevima; (c) glavni smjerovi izračunati iz mjerenog signala \vec{v}_T; (d) glavni smjerovi izračunati iz filtriranog kratkoperiodičkog signala \vec{v}_{HF} koji uključuje i plimne oscilacije. Kod PCA analize ekstrahirana je srednja vrijednost iz \vec{v}_T signala. (Napomena: srednja vrijednost, tj. rezidualno strujanje vezano uz \vec{v}_{HF} nije signifikantno različito od 0).
Rezidualno konstantno srednje strujanje

Rezidualno konstantno strujanje \(\vec{v}_T \) je tijekom mjernog perioda bilo najjačeg inteziteta (2.06-2.14 \(cm \ s^{-1} \)) u sredini morskog stupca (Slika 3.117, Slika 3.114, Tablica 3.18). Najznačajnija razlika u odnosu na postaju V3, sadržana je u smjeru rezidualne struje. Na postaji V4 rezidualna struja dominantno je usmjeren prema sjeveroistoku. Dodatno, analiza ukazuje da generator rezidualnog kretanja je dugoperiодички strujni tok: rezidualne vrijednosti ukupnog signala \(\vec{v}_T \) i \(\vec{v}_{LF} \) su skoro identične (Slika 3.117 (a), (b)).

![Slika 3.117: Rezidualno konstantno strujanje na Postaji V4: (a) izračunato iz signala \(\vec{v}_T \) (b) izračunato iz filtriranog dugoperiодичкog signala \(\vec{v}_{LF} \).](image-url)
3.8.3.3. Strujanje mora na lokaciji Trsina i Tvrduša

Opće karakteristike brzine strujanja

Na postajama V1 i V2 provedena su mjerenja u kasnijem terminu u odnosu na postaje V3 i V4. Mjereni podaci na postaji V1, kao i slučaj postaja V3 i V4, ukazuju na ujednačenu ulogu ne-plimnih i plimnih utjecaja u formiranju strujnog polja. Naime, u mjerenim podacima maskirana je izrazita periodičnost i pravilnost promjene u intezitetu brzine i smjeru strujanja na periodima nižim od dana (Slika 3.119 (a), Slika 3.120), koja je inače vidljiva kod plimnih strujanja u Jadranu. Kada iz ukupnog mjerenog strujnog profila \(\vec{v}_T \) izdvojimo dio strujnog toka koji čuva dnevne i poludnevne plimne oscilacije (\(\vec{v}_{HF} \)) od strujanja vođenog procesima na dužim vremenskim skalama (\(\vec{v}_{LF} \)) (Slike 3.119 (b), (c)), pravilne oscilacije postaju vidljive, ali ne jasno formirane (Slika 3.119 (c)). To sugerira na djelomičnu disipaciju plimne energije na frekvencije bliske dominantnim dnevnim i pludnevnim harmonicima, kao i na potencijalno dodatne ne-plimne generatore energije u tom dijelu spektra.

Strujanje na dužim vremenskim skalama od dva dana, kao i kod postaje V3, karakterizira prisutnost u čitavom vertikalnom stupcu (Slika 3.119 (b)), ali i atenuacija jačine s porastom dubine (Slika 3.118, Slika 3.120). Različitost u odnosu na postaje V3 i V4, iskazuje se u zaokrenutoj strujnoj polja u smjeru sjever - jug (Slika 3.120), što je posljedica geomorfološkog i batimetrijskog konteksta u kojem se postaja V1 nalazi (Slika 3.96 (a)). Mjerni period karakteriziralo je dugotrajno puhanje juga, što se u strujnom zapisu reflektira kao veća zastupljenost sjevernih smjerova vektora strujanja (Slika 3.119 (b), Slika 3.120), pri čemu je i najjači intezitet strujanja izmjereno 17.12.2019 za vrijeme jakog juga. Doprinos sjevernom smjeru kretanja na dugim skalama dolazi i od opće ciklonalne cirkulacije u Jadranu. U periodima bure 11.12, 14.12, 21.12. 2019 i 6.1.2020. zabilježeno je povećanje brzine strujanja i promjena toka u južn smjer.

Maksimalne brzine morske struje po slojevima mjerene ADCP uređajem dosezale su vrijednosti od 20.9 cm s\(^{-1}\) do 31.02 cm s\(^{-1}\). Zbog oscilatornog karaktera plimnog strujanja srednje vrijednosti brzine manjeg su inteziteta i kreću se u rasponu od 2.88 cm s\(^{-1}\) do 7.77 cm s\(^{-1}\) (Tablica 3.20). No, bez obzira na smanjenje brzine u donjim slojevima, lokacija V1 posjeduje najvišu razinu strujne cirkulacije u odnosu na ostale lokacije V2-V4.
Slika 3.118: Brzina strujnog vektora (\vec{v}_T) mjerena na Postaji V1.

Studija utjecaja na okoliš

Slika 3.120: Satne vrijednosti strujnog toka \(\vec{v}_T \) na Postaji V1

Tablica 3.20: Bazična statistika vezana uz mjereni strujni tok \(\vec{v}_T \) na Postaji V1. Smjer struje je prema oceanografskoj konvenciji: istočni=0°, sjeverni=90°, zapadni=180°, južni=270°. (Napomena: Odstupanje suma varijanci LF-signala i HF-signala od varijance ukupnog signala (T) vezano je uz kovarijancu između LF i HF signala. U slučaju nezavisnosti, \(\text{var}(\vec{v}_{HF})+\text{var}(\vec{v}_{LF})=\text{var}(\vec{v}_T) \)).

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>residualni strujni vekt. (brzina/smjer)</th>
<th>varijanca (\vec{v}_T) (cm(^2)s(^{-2}))</th>
<th>varijanca (\vec{v}_{LF}) (cm(^2)s(^{-2}))</th>
<th>varijanca (\vec{v}_{HF}) (cm(^2)s(^{-2}))</th>
<th>srednja brzina vektora (cm(^{-1}))</th>
<th>max. brzina vektora (cm(^{-1}))</th>
<th>stand. dev. brzine strujnog vektora (cm(^1)s(^{-1}))</th>
<th>stabilnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.91</td>
<td>4.96 / 94.40</td>
<td>68.40</td>
<td>37.86</td>
<td>29.32</td>
<td>7.77</td>
<td>30.14</td>
<td>5.72</td>
<td>0.64</td>
</tr>
<tr>
<td>5.91</td>
<td>3.91 / 92.08</td>
<td>60.19</td>
<td>31.06</td>
<td>27.41</td>
<td>6.94</td>
<td>31.02</td>
<td>5.23</td>
<td>0.56</td>
</tr>
<tr>
<td>7.91</td>
<td>2.62 / 91.74</td>
<td>53.05</td>
<td>27.84</td>
<td>23.74</td>
<td>6.09</td>
<td>30.61</td>
<td>4.78</td>
<td>0.43</td>
</tr>
<tr>
<td>9.91</td>
<td>1.64 / 91.05</td>
<td>48.21</td>
<td>26.52</td>
<td>21.00</td>
<td>5.60</td>
<td>30.02</td>
<td>4.42</td>
<td>0.29</td>
</tr>
<tr>
<td>11.91</td>
<td>0.91 / 93.00</td>
<td>43.06</td>
<td>23.70</td>
<td>18.75</td>
<td>5.22</td>
<td>29.40</td>
<td>4.08</td>
<td>0.18</td>
</tr>
<tr>
<td>13.91</td>
<td>0.37 / 107.85</td>
<td>37.91</td>
<td>20.67</td>
<td>16.68</td>
<td>4.80</td>
<td>28.10</td>
<td>3.87</td>
<td>0.08</td>
</tr>
<tr>
<td>15.91</td>
<td>0.25 / 211.49</td>
<td>30.83</td>
<td>16.02</td>
<td>14.06</td>
<td>4.27</td>
<td>27.90</td>
<td>3.56</td>
<td>0.06</td>
</tr>
<tr>
<td>17.91</td>
<td>0.40 / 243.60</td>
<td>25.67</td>
<td>12.94</td>
<td>12.04</td>
<td>3.84</td>
<td>27.30</td>
<td>3.33</td>
<td>0.10</td>
</tr>
<tr>
<td>19.91</td>
<td>0.45 / 248.95</td>
<td>23.66</td>
<td>11.80</td>
<td>11.25</td>
<td>3.64</td>
<td>26.81</td>
<td>3.26</td>
<td>0.12</td>
</tr>
<tr>
<td>21.91</td>
<td>0.51 / 260.42</td>
<td>20.89</td>
<td>10.52</td>
<td>10.07</td>
<td>3.39</td>
<td>25.70</td>
<td>3.11</td>
<td>0.15</td>
</tr>
<tr>
<td>23.91</td>
<td>0.46 / 266.43</td>
<td>14.80</td>
<td>7.42</td>
<td>7.33</td>
<td>2.88</td>
<td>20.90</td>
<td>2.60</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Studija utjecaja na okoliš

Slika 3.121: Procjena po slojevima srednje brzine strujanja, konstantne rezidualne brzine i varijance strujnog vektora na Postaji V1.

Vertikalni profil brzine strujanja

Vertikalno, zamjećujemo postepeni pad srednjih brzina, od srednje brzine 7.77 cm s\(^{-1}\) na površini do 2.88 cm s\(^{-1}\) u pridnenom sloju - što iznosi 63% (Slika 3.121). No, pri tome valja imati na umu da je lokacija V1 ujedno i najdublja lokacija od svim mjerenih. Pad srednjih brzina je ujednačen, skoro linearan. Obratno, pad inteziteta rezidualnog vektora nema linearu formu, već bilježimo strogi pad do dubine od 13m, zatim uniformo niske vrijednosti do dna. Srednje brzine strujanja najviše su u odnosu na ostale postaje.

Nažalost, vertikalno, strujanje u najgornjem površinskom sloju mjereno ADCPmjernim uređajem nije bilo moguće uvrstiti u analizu zbog visoke nepouzdanosti mjerenja. No, površinske struje potpomognute vjetrom mogu dosezati i premašiti strujanje u ovdje mjerenim slojevima.

Vremenska varijabilnost brzine strujanja

Vremenska varijabilnost brzine strujnog toka izražava se varijancom mjerenih vremenskih nizova brzine, odnosno standardnom devijacijom. Vertikalna raspodjela standardne devijacije brzine strujnog toka slijedi vertikalni raspored srednjih brzina strujnog toka i kreće se u rasponu 2.60-5.72 cm s\(^{-1}\) (Tablica 3.20). Vremenska varijabilnost također je viša u odnosu na ostale lokacije.
Studija utjecaja na okoliš

Smjer strujanja mora

Smjer strujnog toka na lokaciji mjerenja dominantno se pruža u smjeru sjever-jug (Slika 3.120, Slika 3.122 (a) - panel lijevo). Gruba procjena samo s obzirom na osam glavnih smjerova (N, NE, E, SE, S, SW, W, NW) korespodentno tome definira i iznose najvećih brzina strujnog toka u sjevernim i južnim smjerovima (Slika 3.122 (a) - panel desno). Određena asimetrija prisutna u distribuciji zastupljenosti smjerova i srednjih brzina po smjerovima kod analize ukupnog mjerenog signala \vec{v}_T gubi se filtriranjem rezidulanog strujnog toka \vec{v}_{LP}, odnosno uklanjanjem ne-plimnih doprinosa strujanju (Slika 3.122 (b)). Asimetrija je dominatnije prisutna u gornjim slojevima, s usmjerenošću prema sjeveru.

Slika 3.122: **Postaja V1**: frekvencija pojavljivanja strujnog smjera (lijevo; %) i srednja apsolutna brzina (desno; $cm\ s^{-1}$) s obzirom na osam glavnih smjerova
Vremenska varijabilnost strujanja mora

Vremenska varijabilnost ne samo brzine, već i smjera strujnog toka izražava se zajednički varijancom vremenskog niza mjerenog strujnog vektora \(\text{var}(\vec{v}_T) \) (Tablica 3.20, Tablica 3.21, Slika 3.121). Varijabilnost smjera strujnog toka poglavito je važna ukoliko značajnu komponentu vodenog toka čini gibanje oscilatornog karaktera poput plimnih struja.

PCA analizom ukupnog signala strujnog toka \(\vec{v}_T - \bar{\vec{v}}_T \) procjenjeni su glavni smjerovi (osi) distribucije varijance signala strujanja mora (Tablica 3.21). Usmjerenost strujnog toka je, kao i kod ostalih postaja, gotovo bipolarna (Slika 3.123 (a)) i definirana batimetrijskim i geomorfološkim kontekstom (Slika 3.96 (c)). Inklinacija glavne osi je u rasponu od \(-85.96^\circ\) do \(-88.44^\circ\) u odnosu na \(x\)-os (Slika 3.123 (c)). Postotak varijance objašnjen glavnom osi je velik u čitavom vertikalnom stupcu (97-98%).

Sukladno očekivanjima vertikalna distribucija ukupne varijance prati raspodjelu srednjih struja (Slika 3.121, Tablica 3.21, Slika 3.123 (b)), tj. varijabilnost (varijanca) strujnog toka pada s dubinom. Varijanca ukupnog strujanja \(\vec{v}_T \) podjednako je kroz vertikalni stupac raspoređena na varijancu strujanja \(\vec{v}_{HF} \) i varijancu strujanja \(\vec{v}_{LF} \), što generira razliku u jakosti varijance između \(\text{var}(\vec{v}_T) \) i \(\text{var}(\vec{v}_{HF}) \) (Slike 3.123 (c) i (d)). PCA analiza \(\vec{v}_{HF} \) komponente signala ukazuje na podudaranje glavnih osi distribucije strujnog toka s \(\text{var}(\vec{v}_T) \).
Slika 3.123: Distribucija varijance strujanja na Postaji V1 prema PCA- analizi: (a) elipse određene glavnim osima i inklinacijom izračunatim iz mjerenog signala \vec{v}_T; (b) vertikalni prikaz elipsi po slojevima; (c) glavni smjerovi izračunati iz mjerenog signala \vec{v}_T; (d) glavni smjerovi izračunati iz filtriranog kratkoperiocihog signala \vec{v}_{HF} koji uključuje i plinne oscilacije. Kod PCA analize ekstrahirana je srednja vrijednost iz \vec{v}_T signala. (Napomena: srednja vrijednost, tj. rezidualno strujanje vezano uz \vec{v}_{HF} nije signifikantno različito od 0).
Studija utjecaja na okoliš

Rezidualno konstantno srednje strujanje

Rezidualno konstantno strujanje \vec{v}_T je tijekom mjernog perioda bilo najjačeg inteziteta (1.64-4.96 cm s$^{-1}$) u gornjem sloju morskog stupca (Slika 3.124, Slika 3.121, Tablica 3.20). Razlika u odnosu na ostale postaje sadržana je i u smjeru, i u intezitetu rezidualne struje. Na postaji V4 rezidualna struja dominantno je usmjeren prema sjeveru u gornjem sloju (do 13 m), dok s povećanjem dubine intezitet pada i dolazi so zakretanja u južnom smjeru. Dodatno, analiza ukazuje da generator rezidualnog kretanja je dugoperiодички strujni tok: rezidualne vrijednosti ukupnog signala \vec{v}_T i \vec{v}_{LF} su skoro identične (Slika 3.124 (a), (b)).

Slika 3.124: Rezidualno konstantno strujanje na Postaji V1: (a) izračunato iz signala \vec{v}_T (b) izračunato iz filtriranog dugoperiодичког signala \vec{v}_{LF}.
3.8.3.4. Strujanje mora na lokaciji Bilančevica i Bočarije Vele

Opće karakteristike brzine strujanja

Na postaji V2 provedena su mjerenja u kasnijem terminu, istovremeno kada i na postaji V1. Mjereni podaci na postaji V2, kao i slučaj ostalih postaja, ukazuju na kompozitnu ulogu ne-plimnih i plimnih utjecaja u formiranju strujnog polja. Naime, u mjerenim podacima na lokaciji V2 (iako u manjem intezitetu nego na ostalim postajama) maskirana je izrazita pravilnost promjene brzine i smjera smjera koja je inače vidljiva kod plimnih strujanja u Jadranu (Slika 3.126 (a), Slika 3.127). Kada iz ukupnog mjerenog strujnog profila \vec{v}_T izdvojimo dio strujnog toka koji uključuje dnevne i poludnevne plimne oscilacije (\vec{v}_{HF}) od strujanja vođenog procesima na dužim vremenskim skalama (\vec{v}_{LF}) (Slike 3.126 (b), (c)), oscilacije na nižim periodima postaju vidljive, ali ne jasno formirane (Slika 3.126 (c)). To sugerira na djelomičnu disipaciju plimne energije na frekvencije bliske dominantnim dnevnim i pludnevnim harmonicima, kao i na potencijalno dodatne ne-plimne generatore energije u tom dijelu spektra.

Strujanje na dužim vremenskim skalama od dva dana karakterizira prisutnost u čitavom vertikalnom stupcu (Slika 3.126 (b)), ali i atenuacija jačine s porastom dubine, kao i uniformno manji intezitet kroz čitav stupac u odnosu na postaje V1 i V3-V4 (Slika 3.125, Slika 3.127). Različitost u odnosu na postaju V1 dodatno se iskazuje i u zakrenutosti strujnog polja u smjeru sjeverozapad-jugoistok, što je posljedica geomorfometrijskog i batimetrijskog konteksta u kojem se postaja V1 nalazi (Slika 3.127).

Maksimalne brzine morske struje po slojevima mjerene ADCP uređajem dozezale su vrijednosti od 21.58 cm s$^{-1}$ do 25.98 cm s$^{-1}$. Zbog oscilatornog karaktera plimnog strujanja srednje vrijednosti brzine značajno su manjeg inteziteta i kreću se u rasponu od 3.17 cm s$^{-1}$ do 5.72 cm s$^{-1}$ (Tablica 3.22).
168

Slika 3.125: Brzina strujnog vektora (\vec{v}_T) mjerena na Postaji V2.

Slika 3.126: Smjer strujanja na Postaji V2.
Studija utjecaja na okoliš

Slika 3.127: Satne vrijednosti strujnog toka \vec{v}_T na Postaji V2

Tablica 3.22: Bazična statistika vezana uz mjereni strujni tok \vec{v}_T na Postaji V2. Smjer struje je prema oceanografskoj konvenciji: istočni=0°, sjeverni=90°, zapadni=180°, južni=270°. (Napomena: Odstupanje suma varijanci LF-signala i HF-signala od varijance ukupnog signala (T) vezano je uz kovarijancu između LF i HF signala. U slučaju nezavisnosti, $\text{var}(\vec{v}_{HF})+\text{var}(\vec{v}_{LF})=\text{var}(\vec{v}_T)$).

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>residualni vekt. strujni vekt. (brzina/smjer)</th>
<th>varijanca \vec{v}_T (cm2 s$^{-2}$)</th>
<th>varijanca \vec{v}_{LF} (cm2 s$^{-2}$)</th>
<th>varijanca \vec{v}_{HF} (cm2 s$^{-2}$)</th>
<th>srednja brzina vektora strujnog (cm s$^{-1}$)</th>
<th>max. brzina vektora strujnog (cm s$^{-1}$)</th>
<th>stand. dev. brzine vektora strujnog (cm s$^{-1}$)</th>
<th>stabilnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.48</td>
<td>0.24 / 5.60</td>
<td>46.14</td>
<td>8.83</td>
<td>37.32</td>
<td>5.32</td>
<td>25.91</td>
<td>4.23</td>
<td>0.05</td>
</tr>
<tr>
<td>5.48</td>
<td>0.52 / 352.32</td>
<td>41.84</td>
<td>8.02</td>
<td>34.45</td>
<td>5.09</td>
<td>24.34</td>
<td>4.03</td>
<td>0.10</td>
</tr>
<tr>
<td>7.48</td>
<td>0.41 / 13.60</td>
<td>33.47</td>
<td>5.62</td>
<td>27.88</td>
<td>4.50</td>
<td>25.79</td>
<td>3.66</td>
<td>0.09</td>
</tr>
<tr>
<td>9.48</td>
<td>0.31 / 51.39</td>
<td>28.44</td>
<td>4.62</td>
<td>23.42</td>
<td>4.07</td>
<td>25.98</td>
<td>3.46</td>
<td>0.08</td>
</tr>
<tr>
<td>11.48</td>
<td>0.31 / 88.93</td>
<td>25.69</td>
<td>4.17</td>
<td>21.24</td>
<td>3.81</td>
<td>24.93</td>
<td>3.35</td>
<td>0.08</td>
</tr>
<tr>
<td>13.48</td>
<td>0.31 / 108.72</td>
<td>23.91</td>
<td>3.98</td>
<td>19.73</td>
<td>3.65</td>
<td>23.84</td>
<td>3.27</td>
<td>0.08</td>
</tr>
<tr>
<td>15.48</td>
<td>0.30 / 131.96</td>
<td>21.60</td>
<td>3.77</td>
<td>17.65</td>
<td>3.47</td>
<td>22.95</td>
<td>3.10</td>
<td>0.09</td>
</tr>
<tr>
<td>17.48</td>
<td>0.32 / 160.38</td>
<td>18.17</td>
<td>3.24</td>
<td>14.74</td>
<td>3.17</td>
<td>21.58</td>
<td>2.86</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Vertikalni profil brzine strujanja

Vertikalno, zamjećujemo postepeni pad srednjih brzina, od srednje brzine 5.32 cm s$^{-1}$ na površini do 3.17 cm s$^{-1}$ u pridnenom sloju - što iznosi 40% (Slika 3.128). Pad srednjih brzina je nešto brži u gornjem sloju (do 13 m). Intezitet rezidualnog vektora je mali i uniforman kroz cijeli stupac. Intezitet rezidualnog strujnog vektora najmanji je u odnosu na sve tri postaje.

Nažalost, vertikalno, strujanje u najgornjem površinskom sloju mjereno ADCP mjernim uređajem nije bilo moguće uvrstiti u analizu zbog visoke nepouzdanosti mjerenja. No, struje na površini mogu dosezati i potpmognute vjetrovnom dinamikom mogu biti intezivnije, od struja određenih u ovdje mjerenim višim slojevima.

Vremenska varijabilnost brzine strujanja

Vremenska varijabilnost brzine strujnog toka izražava se varijancom mjerenih vremenskih nizova brzine, odnosno standardnom devijacijom. Vertikalna raspodjela standardne devijacije brzine strujnog toka slijedi vertikalni raspored srednjih brzina strujnog toka i kreće se u rasponu 2.86-4.23 cm1 s$^{-1}$ (Tablica 3.22).
Studija utjecaja na okoliš

Smjera strujanja mora

Smjer strujnog toka na lokaciji mjerenja dominantno se pruža u smjeru sjeverozapad-jugoistok (Slika 3.127, Slika 3.129 (a) - panel lijevo). Gruba procjena samo s obzirom na osam glavnih smjerova (N, NE, E, SE, S, SW, W, NW) korespodentno tome definira i iznose najvećih brzina srujnih toka u sjeverozapadnim i jugoistočnim smjerovima (Slika 3.129 (a) - panel desno). Za razliku od postaja V1, V3 i V4, nema značajne asimetrije u distribuciji zastupljenosti smjerova i srednjih brzina po smjerovima kod analize ukupnog mjerenog signala \vec{v}_T (Slika 3.129 (b)). Razlog tome leži u manjoj varijanci dugoperiobičkih ne-plimnih doprinosa strujanju \vec{v}_{LP}.

Slika 3.129: **Postaja V2**: frekvencija pojavljivanja strujnog smjera (lijevo; %) i srednja apsolutna brzina (desno; cm s$^{-1}$) s obzirom na osam glavnih smjerova
Tablica 3.23: PCA analiza mjerenog strujnog zapisa na Postaji V2 (Konvencija smjerova struja: istočna=0°, sjeverna=90°, zapadna±180°, južna=-90°)

<table>
<thead>
<tr>
<th>dubina (m)</th>
<th>ukupna var. (cm² s⁻²)</th>
<th>glavna os var. (cm² s⁻²)</th>
<th>objašnjeno (%)</th>
<th>sporedna os var. (cm² s⁻²)</th>
<th>objašnjeno (%)</th>
<th>omjer var.</th>
<th>glavni smjer (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.48</td>
<td>46.14</td>
<td>43.86</td>
<td>95.06</td>
<td>2.28</td>
<td>4.94</td>
<td>0.05</td>
<td>-40.43</td>
</tr>
<tr>
<td>5.48</td>
<td>41.84</td>
<td>39.82</td>
<td>95.16</td>
<td>2.02</td>
<td>4.84</td>
<td>0.05</td>
<td>-40.00</td>
</tr>
<tr>
<td>7.48</td>
<td>33.47</td>
<td>31.65</td>
<td>94.56</td>
<td>1.82</td>
<td>5.44</td>
<td>0.06</td>
<td>-38.28</td>
</tr>
<tr>
<td>9.48</td>
<td>28.44</td>
<td>26.82</td>
<td>94.29</td>
<td>1.62</td>
<td>5.71</td>
<td>0.06</td>
<td>-36.66</td>
</tr>
<tr>
<td>11.48</td>
<td>25.69</td>
<td>24.34</td>
<td>94.76</td>
<td>1.34</td>
<td>5.24</td>
<td>0.06</td>
<td>-34.92</td>
</tr>
<tr>
<td>13.48</td>
<td>23.91</td>
<td>22.81</td>
<td>95.39</td>
<td>1.10</td>
<td>4.61</td>
<td>0.05</td>
<td>-33.73</td>
</tr>
<tr>
<td>15.48</td>
<td>21.60</td>
<td>20.66</td>
<td>95.68</td>
<td>0.93</td>
<td>4.32</td>
<td>0.05</td>
<td>-33.06</td>
</tr>
<tr>
<td>17.48</td>
<td>18.17</td>
<td>17.35</td>
<td>95.52</td>
<td>0.81</td>
<td>4.48</td>
<td>0.05</td>
<td>-33.13</td>
</tr>
</tbody>
</table>

Vremenska varijabilnost strujanja mora

Vremenska varijabilnost ne samo brzine, već i smjera strujnog toka izražava se zajednički varijanjom vremenskog niza mjerenog strujnog vektora \vec{v}_T (Tablica 3.22, Tablica 3.23, Slika 3.128). Varijabilnost smjera strujnog toka poglavito je važna ukoliko značajnu komponentu vodenog toka čini gibanje oscilatornog karaktera poput plimnih struja.

PCA analizom ukupnog signala strujnog toka $\vec{v}_T - \vec{\bar{v}}_T$ procjenjeni su glavni smjerovi (osi) distribucije varijance signala strujanja mora (Tablica 3.23). Usmjerenost strujnog toka je, kao i kod ostalih postaja, gotovo bipolarna (Slika 3.130 (a)) i definirana batimetrijskim i geomorfometrijskim kontektom (Slika 3.96 (b)). Inklinacija glavne osi je u rasponu od -33.06 ° do -40.43 ° u odnosu na x-os (Slika 3.130 (c)). Postotak varijance objašnjen glavnom osi je velik u čitavom vertikalnom stupcu (94-96%).

Sukladno očekivanjima vertikalna distribucija ukupne varijance prati raspodjelu srednjih struja (Slika 3.128, Tablica 3.23, Slika 3.130 (b)), tj. varijabilnost (varijanca) strujnog toka pada s dubinom. Za razliku od ostalih postaja, varijanca ukupnog strujanja \vec{v}_T u većoj mjeri je kroz vertikalni stupac raspoređena na varijancu strujanja \vec{v}_{HF}, a manjoj mjeri na varijancu strujanja \vec{v}_{LF}, pa stoga nema velike razlike u varijanci između $var(\vec{v}_T)$ i $var(\vec{v}_{HF})$ (Slike 3.130 (c) i (d)). PCA analiza \vec{v}_{HF} komponente signala dodatno ukazuje na podudaranje glavnih osi distribucije strujnog toka s $var(\vec{v}_T)$.
Slika 3.130: Distribucija varijance strujanja na Postaji V2 prema PCA-analizi: (a) elipsa određene glavnim osima i inklinacijom izračunatim iz mjerenog signala \vec{v}_T; (b) vertikalni prikaz elipsi po slojevima; (c) glavni smjerovi izračunati iz mjerenog signala \vec{v}_T; (d) glavni smjerovi izračunati iz filtriranog kratkoperiodičkog signala \vec{v}_{HF} koji uključuje i plimne oscilacije. Kod PCA analize ekstrahirana je srednja vrijednost iz \vec{v}_T signala. (Napomena: srednja vrijednost, tj. rezidualno strujanje vezano uz \vec{v}_{HF} nije signifikantno različito od 0).
Rezidualno konstantno strujanje

Rezidualno konstantno strujanje \vec{v}_T je tijekom mjernog perioda bilo najslabijeg inteziteta u odnosu na ostale lokacije (0.24-0.52 cm s$^{-1}$) (Slika 3.128, Slika 3.131, Tablica 3.22). Analiza ukazuje da je generator rezidualnog kretanja dugoperiocički strujni tok: rezidualne vrijednosti ukupnog signala \vec{v}_T i \vec{v}_{LF} su skoro identične (Slika 3.131 (a), (b)), a kako je varijanca \vec{v}_{LF} smanjena u odnosu na ostale postaje, to je i rezidualno strujanje koje ono generira također najmanjeg inteziteta.

Slika 3.131: Rezidualno konstantno strujanje na Postaji V2: (a) izračunato iz signala \vec{v}_T (b) izračunato iz filtriranog dugoperiocičkog signala \vec{v}_{LF}.
3.8.3.5. Plimna komponenta strujanja mora

Mjerenja razine mora ukazuju da se 52.1-88.8% varijance (energije) kratkoperiodičnog h_{HF} signala može objasniti plimnim harmonicima. Stoga, za očekivati je da će tako visoka pojavnost plimnog signala u signalu razine biti vidljiva i u strujnom zapisu ukoliko značajna količina plimne energije nije disipirana, odnosno konvertirana u turbulentno energiju ili unutarne valove.

Suprotno očekivanjima, harmonijska analiza ne ukazuje na jasnu, statistički značajnu, formaciju dnevnih i poludnevnih plimnih maksimuma energije u strujnim zapisima (Slike 3.132-3.135), već sugerira da da postoji disipacija energije s dominantnih plimnih frekvencija na okolne. Budući da se ekstrakcijom plimnih konstituenata dobiva signal koji opisuje nisku razinu varijance mjerenog strujnog vektora, ekstrakcija i analiza plimnih konstituenata izostavljena je iz izvještaja.

Slika 3.132: Rotacijska spektralna analiza mjerenog strujnog toka (\vec{v}_T) na lokaciji V3: (a) negativno orijentirana komponenta (u smjeru kazaljke na satu) (b) pozitivno orijentirana komponenta (suprotno smjeru kazaljke na satu)
Slika 3.133: Rotacijska spektralna analiza mjerenog strujnog toka (\vec{v}_T) na lokaciji V4: (a) negativno orijentirana komponenta (u smjeru kazaljke na satu) (b) pozitivno orijentirana komponenta (suprotno smjeru kazaljke na satu)

Slika 3.134: Rotacijska spektralna analiza mjerenog strujnog toka (\vec{v}_T) na lokaciji V1: (a) negativno orijentirana komponenta (u smjeru kazaljke na satu) (b) pozitivno orijentirana komponenta (suprotno smjeru kazaljke na satu)
Studija utjecaja na okoliš

Slika 3.135: Rotacijska spektralna analiza mjerenog strujnog toka (\vec{v}_T) na lokaciji V2: (a) negativno orijentirana komponenta (u smjeru kazaljke na satu) (b) pozitivno orijentirana komponenta (upravo smjeru kazaljke na satu)
Sažetak

1. Oscilacija morske razine fazno je uskladena i podjednakog je inteziteta unutar istog mjernog perioda između lokacija V1 i V2, kao i između lokacija V3 i V4. Mjereni raspon oscilacije razine mora iznosio je od -43 cm do 54 cm na postajama V3-V4 tijekom prvog mjernog perioda, te 38% veći raspon (od -60 cm do 74 cm) na postajama V1-V2 tijekom drugog mjernog perioda.

2. Varijanca u oba mjerna perioda značajno je viša od varijance ekstrahiranog plimnog signala. Analiza ukazuje, da sintetizirani plimni signal tijekom prvog mjernog perioda u visokoj mjeri opisuje dio mjerenog signala bez rezidualnih dugoperiodičkih utjecaja (oko 89%), ali samo 56-60% varijance ukupnog signala oscilacije morske razine. Ostali dio čini varijanca koju pripisujemo uzdizanju površine uslijed dugotrajnog puhanja juga u prvom mjernom periodu. U drugom mjernom periodu ne-plimna varijanca je još većeg inteziteta, a pripisujemo je također pojavi dugotrajnog puhanja juga, te pojavi slobodnih oscilacija na periodu oko T=21h (osnovni Jadranski seš). S obzirom na navedeno, tijekom (ljetnog) perioda sa smanjenim atmosferskim utjecajima - za očekivati je da će varijanca razine biti bliža vrijednostima plimne varijance.

3. **Postaja V3** (period 25.10.2019-5.12.2019): Maksimalne mjerene brzine morske struje po slojevima dosezale su vrijednosti od 21.12 cm s⁻¹ do 31.20 cm s⁻¹. Zbog oscilatornog karaktera plimnog strujanja srednje vrijednosti brzine značajno su manjeg inteziteta i kretale su se u rasponu od 3.62 cm s⁻¹ pri dnu do 6.27 cm s⁻¹ u površinskom sloju.

4. **Postaja V4** (period 25.10.2019-5.12.2019): Maksimalne mjerene brzine morske struje po slojevima dosezale su vrijednosti od 20.37 cm s⁻¹ do 25.94 cm s⁻¹. Srednje vrijednosti brzine kretale su se u rasponu od 3.36 cm s⁻¹ pri dnu do 5.24 cm s⁻¹ u površinskom sloju.

5. **Postaja V1** (period 6.12.2019-10.1.2020): Maksimalne mjerene brzine morske struje po slojevima dosezale su vrijednosti od 20.9 cm s⁻¹ do 31.02 cm s⁻¹. Srednje vrijednosti brzine kretale su se u rasponu od 2.88 cm s⁻¹ pri dnu do 7.77 cm s⁻¹ u površinskom sloju. Postaja V1 iskazuje najjaču razinu strujne dinamike od svih mjernih postaja.

6. **Postaja V2** (period 6.12.2019-10.1.2020): Maksimalne mjerene brzine morske struje po slojevima dosezale su vrijednosti od 21.58 cm s⁻¹ do 25.98 cm s⁻¹. Srednje vrijednosti brzine kretale su se u rasponu od 3.17 cm s⁻¹ pri dnu do 5.72 cm s⁻¹ u površinskom sloju.

7. Vertikalno, na svim postajama zamjetan je pad srednje brzine i varijabilnosti brzine s dubinom.
8. Na mjernim postajama V1-V4 srednje brzine strujanja manje su od 10 cm s\(^{-1}\), što lokacije svrstava u kategoriju **umjerene** razine strujne cirkulacije.

10. Najniže rezidualno konstantno strujanje mjereno je na postaji V2 (0.24-0.52 cm s\(^{-1}\)), a tijekom istog perioda zabilježene su i najviše vrijednosti rezidualnog strujanja (1.64-4.96 cm s\(^{-1}\)) u gornjem sloju na postaji V1, kao posljedica izloženosti vjetrovnoj dinamici (jugo) i atmosferskim procesima. Vertikalno - na svim postajama (osim V2) postoji blaga razlika u karakteristika rezidualnog strujanja do sloja od 13m dubine i ispod njega.

11. Dodatno treba istaknuti sljedeće činjenice: (i) strujanje u najgornjem površinskom sloju (0-4m) mjereno ADCP mjernim uređajem nije bilo moguće uvrstiti u analizu zbog visoke nepouzdanosti mjerenja u tom sloju, a s obzirom da površinske struje potpomoćne vjetrom mogu dosezati visoke iznose brzine, ovdje sprovedena analiza za vodeni stupac je konzervativna, odnosno podećenjuje ukupnu strujnu dinamiku vertikalnog stupca; (ii) pozicije kaveza bit će smještene na veću dubinu i veću udaljenost od obale, tako da će utjecaj batimetrije i morfologije na usporavanje strujanja i disipaciju energije biti smanjen što bi trebalo potencijalno rezultirati jačim strujnim poljem.
3.9. VALOVI

Najveća visina valova potencijalno predstavlja opasnost za uzgojne kaveze, stoga se u ovoj sekciji daje procjena na temelju modela i dosadašnjeg iskustva uzgajivača na lokaciji Lukovo Šugarje

Najviši valovi uzrokovani orkanskim jugom ili burom se postižu na otvorenom moru gdje intenzivan vjetar ima najveću dužinu puhanja nad slobodnom površinom mora, bez zapreka od otoka ili obale. Ruže valova za otvoreno more Jadrana jugo-zapadno od Velebitskog kanala nisu karakteristične za valove u Velebitskom kanalu, to su smjerovi i visine koji su se razvili iz valova u Velebitskom kanalu ili dolaze u kanal.

U Velebitskom kanalu, zbog njegove specifične konfiguracije i zaklonjenosti od otvorenog mora, dužina puhanja (tzv. fetch) je funkcija smjera vjetra.

Na temelju modela vjetrovnih valova visoke rezolucije za obalna područja procijenjena je najveća visina valova u Velebitskom Kanalu. Model koristi pojave kao što su širenje kroz kompliciranu geometriju, pojave bijelih vrhova na valovima, interferenciju valova, refrakciju oko obalnih rubova i batimetrije, te disipaciju zbog trenja uz dno.

Izrađene su simulacije za olujno jugo koje puše uzduž kanala i buru (8 B, 17,1 m/s). Slika 3.136 pokazuje najvišu visinu valova tijekom juga, a slika 3.137 tijekom bure. Plava boja označuje valove niže od 1,5 m, a žuta boja visinu valova od 1,5 do 2,5 m. Valovi inducirani vjetrom u Velebitskom kanalu imaju privjetrište od 2 do najviše 10 km. Stoga je inducirana visina valova u 40 % slučajeva ispod 1 m, a svega u 1 % slučajeva do 2,5 m.

Valovi koji dolaze u Velebitski kanal iz južnih i jugozapadnih smjerova ne mogu direktno ući u Kanal, već se moraju uglavnom ogibati između Krka i Prvića kroz Senjskih Vrata i Grgurovog Kanala te između Raba i Paga kroz Paški Kanal. Posljedica tog ogiba je da su valovi značajno manjih visina od onih na otvorenom moru Jadrana i sumjerljivi su s valovima induciranim u Velebitskom kanalu.
Slika 3.136. Najviša visina valova kao posljedica olujnog juga 8 B, 17,1 m/s) (plavo < 1,5 m, 1,5 < žuto < 2,5 m) (OIKON, 2004)
Slika 3.137. Najviša visina valova kao posljedica olujne bure 8 B, 17.1 m/s). (plavo < 1.5 m, 1.5 < žuto < 2.5 m) (OIKON, 2004)
183

Dosadašnje iskustvo uzgajivača na lokaciji Lukovo Šugarje je slijedeće:

1. uzgajivač je dimenzionirao uzgajalište sukladno Norveškom standardu NS9415 a tako namjerava napraviti i za ostala uzgajališta. Standard predviđa dimenzioniranje za visinu valova od 5 do 6 m.

2. Uzgajivač do sada nije opazio nepravilnosti u ponašanju opreme tijekom juga a ni bure.

3. Bura uzrokuje silu na uzgajalište usmjerenu prema Pagu. Unutar mreže sidrenja kavezi se mogu pomicati do 3 m i do sada se nije dogodilo da je ta specifikacija premašena.

4. Jugo uzrokuje silu na kavezima u smjeru Karlobaga i također ima toleranciju do 3 m.

5. Uzgajivač je konstruirao mrežu sidrenja tako da se sidra i oprema može dodatno ugoditi ali do sada za time nije bilo potrebe.
Zaključujemo da visine valova, juga a ni bura ne ugrožavaju sigurnost uzgajališta.

3.10 METEROLOŠKA OBILJEŽA I KLIMATSKE PROMJENE

3.10.1 Meteorološka obilježja područja
Vremenske i klimatske prilike istraživanog područja pod neposrednim su utjecajem nekoliko važnih čimbenika. Na prvom mjestu valja spomenuti zemljopisni položaj i okolni reljef gdje se uzdižu preko 1 600 m visoki vrhunci Velebita. Najvažniji meteorološki čimbenik za predloženi zahvat je vjetar. Strujanje zraka nad nekim područjem odraz je primarne cirkulacije koja se uspostavlja globalnom raspodjelom tlaka zraka, značajnom za topli i hladni dio godine. Prema općoj atmosferskoj cirkulaciji nad kontinentalnu Hrvatsku prodire hladan zrak maritimnog podrijetla iz sjeverozapadnog kvadranta i kontinentalnog podrijetla iz sjeveroistočnog kvadranta. Strujanje toplog i vlažnog zraka najčešće je iz južnog kvadranta. Međutim, u kraćim razdobljima promjene tlaka zraka makro razmjera generiraju i sekundarnu cirkulaciju mezo i lokalnih razmjera. To su pokretni cirkulacijski sustavi koji uzrokuju lokalno strujanje zraka ovisno o reljefu tla, svojstvima podloge i zračnih masa. Dakle, prizemni vjetar karakterističan za neko područje rezultat je advekcije toplog ili hladnog zraka u makro razmjerima koji se u najnižim slojevima troposfere modificira na pojedinim lokacijama ovisno
Studija utjecaja na okoliš

184

o planinskoj preprecii, ali i zbog izloženosti terena, konkavnosti i konveksnosti reljefa, nadmorske visine.

U regionalnim razmjerima vjetrovni režim u Hrvatskoj je pod utjecajem nekoliko čimbenika kao što su blizina alpskog masiva na sjeverozapadu, Dinaridi duž jadranske obale i Panonska nizina u sjeveroistočnom dijelu zemlje. Područje Hrvatske obilježeno je raznolikošću vremenskih situacija uz česte i intenzivne promjene vremena iz dana u dan i tijekom godine. U hladnom dijelu godine prevladavaju anticiklonalni tipovi vremena sa slabim strujanjem, malom turbulentnom razmjenom zraka i stabilnom stratifikacijom atmosfere. S druge strane, zimi nagli prodori hladnog zraka sa sjevera i sjeveroistoka uzrokuju jak, ali vrlo rijetko olujni NE vjetar u unutrašnjosti Hrvatske. Na Jadranu tada zapuše jaka ili olujna bura koja ponekad može postići i orkansku jačinu (Zaninović, 2008).

Čimbenici koji u najvećoj mjeri utječu na vjetrovne prilike nekog područja su zemljopisni položaj i razdioba baričkih sustava opće cirkulacije. Osim toga vjetrovne prilike određene su i utjecajem mora i kopnenog zaleđa, izloženosti terena, konkavnosti i konveksnosti reljefa, nadmorskoj visini i sl. Dakle, strujanje zraka je s jedne strane određeno sinoptičkim, a s druge strane lokalnim razmjerima pa se vjetar znatno mijenja prostorno i vremenski.

Područja podno Velebita i Velebitskog kanala poznata su po jakim i olujnim vjetrovima i to najčešće buri. Bura je na primorskoj strani obalnih planina silazni vjetar najčešće NNE, NE i ENE smjera ovisno o pružanju planinske prepreke. Izabrana meteorološka postaja za cijelo promatrano područje nalazi se u Senju. Podaci o vjetru, tlaku zraka, temperaturi, vlažnosti zraka i padalinama dani su tablicama 3_29 i 3_30.

Slika 3_138 Ruža vjetrova (Zaninović i sur., 2008)
Tablica 3_29 Podatci o vjetru i tlaku zraka u zadnjih godinu i pol dana s meteorološke postaje u Senju

<table>
<thead>
<tr>
<th></th>
<th>Brzina (km/h)</th>
<th>Udari (km/h)</th>
<th>Smjer</th>
<th>Tlak (hPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Sr.v.</td>
<td>Max</td>
<td>Sr.v.</td>
</tr>
<tr>
<td>10/2018</td>
<td>60,8</td>
<td>9</td>
<td>80,6</td>
<td>12,66</td>
</tr>
<tr>
<td>11/2018</td>
<td>99,4</td>
<td>17,9</td>
<td>133,2</td>
<td>24,3</td>
</tr>
<tr>
<td>12/2018</td>
<td>76,7</td>
<td>13,5</td>
<td>121</td>
<td>18,2</td>
</tr>
<tr>
<td>01/2019</td>
<td>85,3</td>
<td>17,4</td>
<td>121,0</td>
<td>23,5</td>
</tr>
<tr>
<td>02/2019</td>
<td>104,8</td>
<td>14,4</td>
<td>141,1</td>
<td>19,5</td>
</tr>
<tr>
<td>03/2019</td>
<td>81,7</td>
<td>14,7</td>
<td>128,9</td>
<td>20,0</td>
</tr>
<tr>
<td>04/2019</td>
<td>70,9</td>
<td>11,0</td>
<td>92,9</td>
<td>15,0</td>
</tr>
<tr>
<td>05/2019</td>
<td>93,2</td>
<td>11,8</td>
<td>128,9</td>
<td>16,0</td>
</tr>
<tr>
<td>06/2019</td>
<td>66,6</td>
<td>10,3</td>
<td>92,9</td>
<td>13,9</td>
</tr>
<tr>
<td>07/2019</td>
<td>63,4</td>
<td>11,7</td>
<td>84,6</td>
<td>15,7</td>
</tr>
<tr>
<td>08/2019</td>
<td>79,6</td>
<td>14,2</td>
<td>96,8</td>
<td>19,0</td>
</tr>
<tr>
<td>09/2019</td>
<td>84,2</td>
<td>15,1</td>
<td>108,7</td>
<td>20,4</td>
</tr>
<tr>
<td>10/2019</td>
<td>77,0</td>
<td>11,5</td>
<td>100,8</td>
<td>15,6</td>
</tr>
<tr>
<td>11/2019</td>
<td>70,9</td>
<td>13,7</td>
<td>92,9</td>
<td>18,3</td>
</tr>
<tr>
<td>12/2019</td>
<td>80,6</td>
<td>14,8</td>
<td>104,8</td>
<td>20,0</td>
</tr>
<tr>
<td>01/2020</td>
<td>82,8</td>
<td>13,8</td>
<td>108,7</td>
<td>18,7</td>
</tr>
<tr>
<td>02/2020</td>
<td>87,1</td>
<td>13,1</td>
<td>121</td>
<td>17,5</td>
</tr>
<tr>
<td>03/2020</td>
<td>98,3</td>
<td>17,9</td>
<td>133,2</td>
<td>24,2</td>
</tr>
</tbody>
</table>

Tablica 3_30 Podatci o temperaturi i vlažnosti zraka, te padalinama u zadnjih godinu i pol dana s meteorološke postaje u Senju

<table>
<thead>
<tr>
<th></th>
<th>Temperatura (C°)</th>
<th>Vlažnost zraka (%)</th>
<th>Padaline (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max</td>
<td>Min</td>
<td>Sr.v.</td>
</tr>
<tr>
<td>10/2018</td>
<td>25,2</td>
<td>10,1</td>
<td>17,2</td>
</tr>
<tr>
<td>11/2018</td>
<td>23,8</td>
<td>0,9</td>
<td>11,4</td>
</tr>
<tr>
<td>12/2018</td>
<td>17,2</td>
<td>0,4</td>
<td>7,5</td>
</tr>
<tr>
<td>01/2019</td>
<td>13,1</td>
<td>-1,3</td>
<td>4,6</td>
</tr>
<tr>
<td>02/2019</td>
<td>18,2</td>
<td>-1,4</td>
<td>8,7</td>
</tr>
<tr>
<td>03/2019</td>
<td>21,5</td>
<td>3,2</td>
<td>12,0</td>
</tr>
<tr>
<td>04/2019</td>
<td>25,2</td>
<td>5,1</td>
<td>13,9</td>
</tr>
<tr>
<td>05/2019</td>
<td>25,5</td>
<td>4,9</td>
<td>14,5</td>
</tr>
<tr>
<td>06/2019</td>
<td>36,3</td>
<td>15,3</td>
<td>25,4</td>
</tr>
<tr>
<td>07/2019</td>
<td>36,4</td>
<td>16,5</td>
<td>25,6</td>
</tr>
<tr>
<td>08/2019</td>
<td>35,6</td>
<td>17,5</td>
<td>26,0</td>
</tr>
<tr>
<td>09/2019</td>
<td>32,8</td>
<td>11,9</td>
<td>20,4</td>
</tr>
<tr>
<td>10/2019</td>
<td>28,0</td>
<td>7,9</td>
<td>17,0</td>
</tr>
<tr>
<td>11/2019</td>
<td>21,3</td>
<td>7,2</td>
<td>13,2</td>
</tr>
<tr>
<td>12/2019</td>
<td>18,9</td>
<td>0,2</td>
<td>9,3</td>
</tr>
<tr>
<td>01/2020</td>
<td>15,3</td>
<td>1,7</td>
<td>8,3</td>
</tr>
<tr>
<td>02/2020</td>
<td>17,1</td>
<td>2,8</td>
<td>10,7</td>
</tr>
<tr>
<td>03/2020</td>
<td>21,5</td>
<td>-1,6</td>
<td>9,9</td>
</tr>
</tbody>
</table>
3.10.2 Klimatske promjene

Klima u užem smislu predstavlja prosječne vremenske prilike izražene pomoću srednjaka, ekstrema i varijabilnosti klimatskih veličina u dužem, najčešće 30-godišnjem razdoblju. Klimatske veličine su primjerice prizemna temperatura zraka, oborine i vjetar. Osim prostorno, klima se mijenja i u vremenu. Zamjetna je međusezonska različitost klime kao i varijacije klime na godišnjoj i višegodišnjoj skali, ali i tijekom dugih razdoblja kao što su npr. ledena doba koja su uzrokovana astronomskim čimbenicima koji mijenjaju dolazno Sunčevo zračenje na površinu Zemlje. Varijacije klime vidljive su u promjenama srednjeg stanja klime, promjenama međugodišnje varijabilnosti klimatskih parametara te drugih statističkih veličina koje opisuju stanje klime kao što je primjerice pojavljivanje ekstrema. Statistički značajne promjene srednjeg stanja ili varijabilnosti klimatskih veličina koje traju desetljećima i duže, nazivaju se klimatskom promjenom.

Utjecaj čovjeka na klimu naglo je povećan u drugoj polovici 18. stoljeća s početkom industrijske revolucije. Sagorijevanjem fosilnih goriva, promjenom tipova podloge koja nastaje, primjerice, urbanizacijom, sjećom šuma i razvojem poljoprivrede, došlo je do promjene kemijskog sastava atmosfere, odnosno, do povećanja koncentracije plinova staklenika u atmosferi u odnosu na predindustrijsko doba (prije 1750. godine). Od početka industrijalizacije do danas, značajno su se povećale koncentracije ugljikovog dioksida, metana, didušikovog oksida i halogeniziranih ugljikovodika (engl. halocarbons) u atmosferi, što je uzrokovalo jači efekt staklenika i veće zagrijavanje atmosfere od onog koje se događa prirodnim putem. Klima je jedna od prirodnih osobitosti neke zemlje njoj ovise život i zbjivanja u prirodi, a gotovo da nema ljudske djelatnosti koja ne ovisi o vremenu i klimi. Stoga je poznavanje klimatskih osobitosti važno zbog planiranja razvoja i aktivnosti u mnogim društvenim i gospodarskim djelatnostima.

Trend porasta temperature zraka u 20. stoljeću zabilježen je i na postajama u Hrvatskoj (Gajić-Čapka i sur., 2010). Stoljetni nizovi mjerenja temperature zraka upućuju na porast između 0,02°C i 0,07°C na 10 godina. Kao i na globalnoj razini, trend porasta temperature zraka osobito je izražen u posljednjih 50, odnosno 25 godina. Srednja godišnja temperatura zraka za 2019. godinu na području Hrvatske bila je iznad višegodišnjeg prosjeka (1981. – 2010.). Anomalije srednje godišnje temperature zraka nalaze se u rasponu od 0,7°C (Komiža) do 1,9°C (Gospić i Zagreb-Grič) (DHMZ, www.meteo.hr).
Studija utjecaja na okoliš

Slika 3_139 Srednja godišnja temperatura zraka u RH tijekom 2019. godine

Studija utjecaja na okoliš

Slika 3: Količina oborina u RH tijekom 2019. godine

Prema Branković i sur. (2010) srednja temperatura zraka na 2 m u narednom klimatološkom razdoblju povećati će se na cijelom području tijekom cijele godine od ~1,5 do ~1,8°C izuzev ljeta kada se očekuje razlika i od ~2,5 do 3°C. Zbog tendencije atmosfere ka uravnoteženju promjena, zagrijavanje atmosfere razlikovati će se tijekom godine te se očekivano mogu javiti ekstremne vrijednosti u nekim sezonama (npr. ljeto), dok će druge sezone biti pod manjim utjecajem zagrijavanja. Zagrijavanje atmosfere će se razlikovati prostorno tijekom godine, a posebno se razlika očekuje na kopnu u odnosu na more zbog lokalnih klimatoloških obilježja.
4. OPIS UTJECAJA ZAHVATA NA OKOLIŠ

4.1 UTJECAJI TIJEKOM POSTAVLJANJA KAVEZA

Uzgojne instalacije sastoje se od biološki inertnih materijala stoga se prilikom njihovog postavljanja ne očekuje negativan utjecaj na okoliš, odnosno na kakvoću mora i morske organizme. Tijekom postavljanja, ali i kasnije tijekom uzgoja, uzgojne instalacije se ne tretiraju protuobraštajnim sredstvima.

Dopremu i postavljanje uzgojnih instalacija radi ovlašteno poduzeće koje mora osigurati područje zahvata prema zakonskim propisima. Postupajući na navedeni način, postavljanje uzgojnih instalacija nema značajnog utjecaja na sigurnost plovidbe.

Za sidrenje uzgojnih instalacija koriste se betonski blokovi čime dolazi do uništavanja morskih zajednica u i na sedimentu na površini koju zauzimaju blokovi. Postavljeni betonski blokovi i sidreni vezovi u kasnijoj fazi postaju mjesto naseljavanja novih morskih zajednica. S obzirom da se radi o maloj zahvaćenoj površini i privremenom negativnom utjecaju, utjecaj se smatra zanemarivim.

Nakon postavljanja uzgojnih instalacija, uzgajališta V3 i V4 zauzimaju od po 16,2 ha, odnosno po 3,3 ha za uzgajališta V1 i V2 (ukupna površina za sva četiri uzgajališta iznosi 39 ha) mora i taj će dio mora biti izuzet iz područja ribolova. Uspostavom uzgajališta neće doći do gubitka kakvoće mora uz obalu koja se može koristiti kao plaža.

4.2 UTJECAJI TIJEKOM RADA UZGAJALIŠTA

4.2.1. Otpad

Tijekom rada uzgajališta, odnosno procesa proizvodnje, nastajat će otpad koji se prema Pravilniku o katalogu otpada ("Narodne novine" broj 90/15) klasificira kao:

- 02 01 02 otpadna životinjska tkiva
- 02 01 04 otpadna plastika (isključujući ambalažu)
- 04 02 09 otpad od mješovitih (kompozitnih) materijala (impregnirani tekstil, elastomeri, plastomeri)
- 13 02 05* neklorirana motorna, strojna i mazivna ulja, na bazi minerala
- 13 07 02* benzin
- 13 07 07* ostala goriva (uključujući mješavine)
Studija utjecaja na okoliš

- 15 01 02 plastična ambalaža
- 15 01 03 drvena ambalaža
- 15 01 10* ambalaža koja sadrži ostatke opasnih tvari ili je onečišćena opasnim tvarima
- 15 02 02* apsorbensi, filtarski materijali (uključujući filtre za ulja koji nisu specificirani na drugi način), tkanine za brisanje i zaštitna odjeća, onečišćeni opasnim tvarima
- 16 01 07* filtri za ulja
- 16 01 19 plastika
- 16 06 01* olovne baterije
- 16 06 05 ostale baterije i akumulatori
- 17 04 05 željezo i čelik
- 20 03 01 miješani komunalni otpad

Tijekom rada uzgajališta nastajat će otpadna životinjska tkiva (02 01 02) koja potječu od uginuća tijekom proizvodnog procesa. Uzgojni kavezi su posebno konstruirani na način da omogućavaju lako sakupljanje uginule ribe putem posebno konstruirane naprave. Uginula riba se redovito sakuplja i brodom odvozi na kopno gdje se u posebnim hladnjačama skladišti do trenutka predaje ovlaštenoj osobi za sakupljanje. Sukladno članku 3. stavku 2. Zakona o gospodarenju otpadom (Narodne novine, broj 84/21), odredbe Zakona ne primjenjuju se na nusproizvode životinjskoga podrijetla uključujući prerađene proizvode osim onih koji su namijenjeni spaljivanju, odlaganju na odlagališta ili uporabi u postrojenjima za proizvodnju bioplina ili komposta. Obzirom na navedeno, otpadna životinjska tkiva predstavljaju vrijedan nusproizvod s kojim će se postupati u skladu sa Zakonom o veterinarstvu (NN 52/21) odnosno iskoristiti za preradu u proizvode namijenjene hranidbi životinja ili industrijskoj uporabi. Sav navedeni opasni otpad (13 02 05*, 13 07 02*, 13 07 07*, 15 01 10*, 15 02 02*, 16 01 07*, 16 06 01*) nastajat će na brodovima kojima će se dopremati i otpremati materijali i sirovine potrebni za rad uzgajališta. Sav opasni otpad odvojeno će se prikupljati prema vrsti otpada, privremeno će se skladišteni za to preduvremenom mjestu, a zatim predavati ovlaštenom sakupljaču. Postupajući na navedeni način, ne očekuje se negativan utjecaj na okoliš.

Plastična ambalaža (15 01 02) potječe od ambalaže za riblju hranu i ista će nastajati u najvećim količinama. Ova vrsta otpada nastajat će na kopnu gdje će se skladištiti riblja hrana. Ambalaža će se privremeno prikupljati na mjestu nastanka, a zatim predavati ovlaštenom sakupljaču.
Drvena ambalaža (15 01 03, točnije drvene palete) će se reciklirati odnosno sklopljiti za otkup istih.

Odvojeno sakupljeni sastojci komunalnog otpada (20 01) i miješani komunalni otpad (20 03 01) ne predstavljaju otpad koji nastaje uzgojem ribe već isti potječe od zaposlenika odnosno boravka ljudi na uzgajalištu. Odvojeno prikupljeni komunalni otpad i miješani komunalni otpad prikupljet će se u za to predviđenim spremnicima, a zatim preda vati ovlaštenom sakupljaču.

Pridržavajući se zakonskih propisa, posebno Zakona o gospodarenju otpadom (NN 84/21) koji propisuje da je proizvođač otpada dužan razdvajati otpad po vrsti otpada, privremeno ga skladištiti na adekvatnom mjestu te na posljednjem preduzeću ga ovlaštenoj osobi za sakupljanje. Postupajući na navedeni način, ne očekuje se značajni utjecaj na okoliš i u tom smislu zahvat je prihvatljiv uz poštivanje važećih propisa.

Prilikom čišćenja obraštaja uzgojnih instalacija očekuje se veća masa organizama gdje dominira dagnja (Mytilus galloprovincialis). Količina obraštaja ovisi o tome koliko često se uklanja. Obraštaj povećava tromost instalacija, što povećava mogućnost oštećenja prilikom snažnog vjetra, a time i neočekivanih nezgoda. Kao uslijed istog može doći do bijega riba iz uzgojnih kaveza. U interesu proizvođača je što češće mehaničko uklanjati obraštaje. Za obavljanje ove radnje koriste se strojevi za čišćenje mreža. Otpad od školjkaša će se sakupiti putem ovlaštene osobe. Uzgojne instalacije se neće tretirati protuobraštajnim sredstvima. Otpad od obraštaja neće imati značaj negativan utjecaj na okoliš, i sve radnje će biti u skladu s propisanim mjerama zaštite te će se postupiti u skladu sa Zakonom o gospodarenju otpadom (NN 84/21), Zakonom o zaštiti okoliša (NN 80/13, 153/13, 78/15, 12/18, 118/18) i Zakonom o zaštiti prirode (NN 80/13, 15/18, 14/19, 127/19). Ne očekuje se značajni utjecaj na okoliš tijekom korištenja zahvata jer je u tom smislu zahvat prihvatljiv uz poštivanje važećih propisa i prostornih planova.

4.2.2 Utjecaj na morski okoliš, biološku raznolikost i morska staništa

Dominantan utjecaj koji će uzgajalište imati na morski okoliš svakako potječe od mikrobiološke razgradnje organske tvari. Ona se raspršuje, outapa i tone kroz vodeni stupac i dijelom se taloži na morsko dno gdje je dalje razgrađuju mikroorganizmi. Organska tvar oslobađa se u obliku fecesa i nepojedene hrane koja se taloži ispod kaveza ili u neposrednoj blizini. Taloženje organske tvari i mikrobiološka razgradnja mogu dovesti do kratkoročnog
smanjenja koncentracije kisika u sedimentu što u ekstremnom slučaju moguće može dovesti do hipoksijske u pridnenom sloju mora, pa čak i do anoksije te moguće pojavе sumporovodika. Životinje koje obitavaju na dnu različito su otporne na smanjenje koncentraciju kisika i sumporovodik. U tom slučaju neke vrste napuštaju stanište dok druge iskorištavaju povećan dotok organske tvari i povećavaju svoje populacije. Navedeno ovisi o lokalitetu uzgajališta odnosno o dubini ispod njega, morskim strujama kao i dotoku organske tvari na dno. U slučaju predmetnih uzgajališta definitivno će najveći utjecaj biti od dotoka na dno fecesa uzgajane ribe. Naime, utjecaj od nepojedene hrane kod uzgoja kalifornijske pasbrane (za razliku kod uzgoja tuna) je neznatan jer je tehnologija došla toliko daleko da se praktički sva utrošena hrana iskorišti za pretvorbu u biomasu riba. Neznatan udio hrane koji riba ne pojede biva pokupljen i vraćen nazad u proizvodni ciklus, a ostatak vrlo brzo pojedu organizmi oko ili ispod kaveza.

Što se tiče utjecaja na morsko stanište ispod uzgajališta, valja razmotriti utjecaj fecesa koji se taloži ispod uzgajališta. Kako je navedeno niže ni u ovom slučaju neće biti značajnog utjecaja. Važno je napomenuti da je dubina ispod kaveza veća od klasičnih uzgajališta bijele ribe (lubin i komarca) te je na dnu ravan teren bez značajnih morskih staništa. Betonski blokoviji i ostali sidreni objekti (konopi i plutaje) predstavljaju novo stanište za naseljavanje organizama dna te je moguće povećanje bogatstva svojti ispod kaveza, posebno iz skupine mnogočetina i zvježda. Obzirom na dubinu, te pretragu područja ispod kaveza, navedena zajednica morskih cvjetnica se tamo ne nalazi, te ne može biti utjecaj na njih. Livade Posidonia oceanica i ostale morske cvjetnice se tamo ne nalaze, ali dovoljno daleko od uzgajališta što je utjecaj biti zanemariv.

4.2.3 Utjecaj na vodeni stupac i dno

Tijekom proizvodnog procesa, u okoliš dolazi do emisije organske tvari u vidu hrane za ribu i metaboličkih produkata samih riba. Sve to utječe na stanje vodnog tijela u vidu otopljenog ugljikovog dioksida, dušika i fosfora kao i povećane potrošnje kisika. Mjereći navedene parametre u vodenom stupcu, primjećuju se velika korelacija koja ovise o mjestu i vremenu uzorkovanja. Zbog toga je nužan dugotrajni monitoring uzgajališta. Podaci s dugih lokaliteta
Studija utjecaja na okoliš

u Zadarskoj županiji (ZZJZZ) govore o tome da ne dolazi do akumulacije fitoplanktona (klorofila a) i povećanje njihove brojnosti nije mjerljivo u području utjecaja akvakultura. Također, uzgajalište ne utječe na hidromorfološke značajke vodnog tijela (nema utjecaj na plimu i oseku). Postoji potencijalna opasnost od izljevanja ulja i goriva s motornih plovila koja opslužuju uzgajalište. S ispravnim održavanjem i redovitim servisima plovila ovaj utjecaj će se svesti na minimum. Nadalje, pridržavanje Županijskog Plana intervencija kod iznenadnog onečišćenja mora svest će utjecaj na minimum ako do toga ipak dođe.

Doseg i sudbina taloženja nepojedene hrane

Uzgajališta V3 i V4

Razmotriti ćemo uzgojno područje V4 s obzirom da je ono najbliže uzgajalištu Lukovo Šugarje pa se očekuje najveći međusobni utjecaj. Sam utjecaj uzgajališta V4 na stupac mora vrijedi i za uzgajalište V3 jer se ono nalazi na jednakoj udaljenosti od obale i također će biti postavljeno na dubini mora većoj od 50 m te se za oba uzgajališta očekuje identičan dotok organske tvari u more.

Kao što je navedeno ranije, upotrijebit će se tehnologija uzgoja koja sadrži lijevak za hvatanje i recirkulaciju nepojedenih peleta hrane. To će inducirati vrlo malu emisiju nepojedene hrane (peleta) u vodenih stupac. Naime, čim hranilica detektira recirkulaciju, hranjenje prestaje. Procjenjuje se da će nepojedene hrane koja se zbog morskih struja neće moći uhvatiti u lijevak biti najviše 1 %. To znači da se u trenutku najintenzivnijeg hranjenja očekuje maksimalna emisija oko 175 kg/dan (2 g/s) na cijelom ribogojilištu odnosno svim kavezima zajedno. Srednja vrijednost emisije nepojedene hrane po intervalu uzgoja je oko 85,4 kg/dan (1 g/s).

Imajući na umu da je specifična težina peleta značajno veća od morske vode, nepojedena hrana padat će na dno hranilice odakle će se redovito sakupljavati i recirkulirati. Za sve čestice koje se ne uspiju uhvatiti i reciklirati, uz pretpostavku srednje horizontalne brzine struje u vodenom stupcu od oko 5 cm/s i brzine tonjenja peleta od 5 do 15 cm/s, te dubine od dna kaveza do morskog dna od 10 do 20 m (peletima treba od 1 do 7 minuta da dostignu dno), srednja udaljenost od centra ribogojilišta na dnu biti će od 3 do 20 m. Najveće raspršenje peleta u smjeru struje biti će u trenutku najveće struje i ono će iznositi od 12 do 80 m.

Slobodne ribe privučene dotokom hrane, tu će količinu lako pojesti većim dijelom prije nego što padne na dno ili neposredno nakon toga.
Zaključak: Emisija nepojedene hrane u vodeni stupac je mala i stoga procjenjivamo da će svu hranu pojesti slobodni organizmi uglavnom prije nego što stigne na dno ili neposredno nakon toga. Držimo da je utjecaj pozitivan na produktivnost viših trofičkih nivoa u moru. Negativan utjecaj na vodeni stupac postoji, ali je on vrlo mali, neakumulativan je i ograničen na koncesijsko područje te ima oblik neznatno povećanog turbiditeta dijela vodenog stupca od hranilice do dna.

Disperzija izlučevina u vodeni stupac

Nesumnjivo je da će glavni utjecaj na okoliš doći od izlučevina uzgajanih riba. Emisija će poprimiti maksimalnu vrijednost od 10-og do 12-og mjeseca, te od 5-og do 6-og mjeseca. Tada će se u vodeni stupac emitirati do 798 kg ugljika u obliku fecesa/dan, 581 kg dušika/dan koji je 75 do 85\% u formi amonijaka, 80,5 kg P/dan fosfora te 4406,5 kg CO₂/dan.

Za procjenu utjecaja relevantan je skup simulacija, koje prikazuju najveći realistični utjecaj. To su scenariji u kojima je dotok najveći a ostali su parametri srednje vrijednosti i zajedno ukazuju na veći od srednjeg očekivanog utjecaja. Račun se može provesti za bilo koji od relevantnih parametra koncentraciju ukupnog fosfora, ukupnog dušika ili ukupnog ugljika. Kako su sva tri parametra vezana Redfieldovim omjerom, lako je iz jedne od tih simulacija skaliranjem preći na drugu ili treću. S obzirom na činjenicu da je fosfor primarna ograničavajuća tvar u vodnom stupcu, provest ćemo izračun za ukupni fosfor.

Metode procjene utjecaja

Jednadžba disperzije koja opisuje distribuciju koncentracije (C) otopljenog fosfora u stupcu mora iz zadanog izvora je:

\[
\frac{\partial C}{\partial t} = \alpha \Delta C - v(t) \nabla C - k C + Q(t)
\]

(1)
Studija utjecaja na okoliš

gdje je: α - koeficijent horizontalne turbulentne difuzije, Δ - Laplaceov operator, $\mathbf{v}(t)$ - vektorsko polje struje, ∇ - gradijentni operator, k - koeficijent uzimanja fosfora od strane fitoplanktona, $Q(t)$ - izvor fosfora kao moguća funkcija vremena.

Imajući na umu da je izvor vrlo sporo promjenjiva funkcija vremena u odnosu na brzinu uspostave distribucije koncentracije, uzet ćemo da je izvor konstantan. Također, iz mjerenja struja u kanalu i na lokaciji vrlo je teško zadati reprezentativno vremenski promjenjivo strujno polje, ali je moguće zadati polje struje uzrokovano plimotvornim silom.

Procjena se odnosi na najveći mogući izravni utjecaj tijekom rada uzgajališta.

Uzgajališta V3 i V4

Emisija otopljenog fosfora u okoliš, nalazi se u intervalu od 15,4 do 53,2 kg P/dan sa srednjom vrijednošću od oko 34,3 kg P/dan. Uzimanjem maksimalne emisije od 0,6 g P/s koji odgovara dotoku 53,2 kg P/dan određujemo najveće trenutni utjecaj, dok nam srednja vrijednost pomaže odrediti srednji direktni doseg. Najveća stalna koncentracija koja potječe iz uzgajališta a usrednjena preko vertikalnog plošnog elementa koji obuhvaća svih 16 kaveza uz struju od 5 cm/s iznosi 0,6 μg P/l.

Za određivanje direktnog područja dosega ribogojilišta valja znati i približnu vrijednost koncentracije ukupnog fosfora u moru Velebitskog kanala, odnosno koncentraciju bez uzgajališta. Ta se vrijednost mijenja tijekom sezona, no može se uzeti da je srednja koncentracija oko 3 μg P/l. Ova vrijednost nije mjerena u Velebitskom kanalu već u otvorenom moru južnog Jadran. U Velebitskom kanalu je mjerena samo koncentracija reaktivnog fosfora u obliku PO$_4$ koja iznosi između 0,6 i 1,6 μg P/l (poglavlje Podaci o okolišu).

Dakle, na samom uzgajalištu kao izvoru, koncentracija fosfora ja za oko 20 % viša nego u okolnom moru.

Valja također poznavati konstantu ekstinkcije (k), odnosno specifičnu brzinu smanjenja koncentracije totalnog fosfora u morskoj vodi. Iz rješavanja inverznog problema distribucije totalnog fosfora u Riječkom zaljevu tj. problema gdje se konstanta ekstinkcije tražila iz poznate mjerene distribucije totalnog fosfora, ustanovljena je vrijednost k od 0,6 do >1 (1/dan) (Legović i sur., 1989). Kako bismo odredili doseg u najnepovoljnijem slučaju uzimamo 0,6 (1/dan).
Za visinu stupca obuhvaćenog distribucijom uzimamo 60 m a za visinu stupca koji odgovara uzgajalištu uzimamo 50 m.
Za razliku od jednadžbe (1), u slijedećoj simulaciji smo još uzeli u obzir tonjenje čestica. Rezultat raspršenja iz uzgajališta je prikazan na vertikalnom transektu koji prolazi kroz uzgajalište (slika 4_1).

Slika 4_1 Raspršenje u vodenom stupcu (vertikalni transekt) uz periodičnu struju plime i oseke i tonjenje čestica

Vidimo da se na udaljenosti uzgajališta od 500 m (na obje strane) iz izvora koji ima koncentraciju fosfora od 3,6 μgP/L, a osnovna koncentracija je 3 μgP/L, neće moći mjeriti povećanje koncentracije ukupnog fosfora. Kako uzgajalište ima širinu od 600 m, na udaljenosti od 500 m u SW-SE smjeru očekujemo povećanje širine utjecaja od 100 m sa obje strane (prema obali i prema otvorenom moru). Kako su morske struje u kanalu izrazito polarizirane, to znači da je malo vjerojatno povećanje koncentracije ukupnog fosfora uz obalu.
Sličnosti, razlike i međusobni utjecaj uzgajališta V4 i Lukovog Šugarja na vodeni stupac

Na slici 4.2 prikazana je simulacija distribucije koncentracije ukupnog fosfora u horizontalnom presjeku na lokaciji ribogojilišta Lukovo Šugarje uz konstantnu struju u nastupu plime. U ovoj simulaciji nije uzeto u obzir tonjenje organske tvari već je pretpostavljeno da je tvar potpuno otopljena pa je stoga utjecaj niz dominantnu struju veći od stvarnog. Povećana koncentracija fosfora neće se ni u tom slučaju moći pouzdano mjeriti na udaljenosti niz struju većoj od 500 m.

Slika 4.2 Horizontalni presjek raspodjele ukupnog fosfora kao otopljene tvari u području uzgajališta Lukovo Šugarje uz najveći predvidiv dotok fosfora

Uzgajalište Lukovo Šugarje može imati najviše 1000 t pastrva dok uzgajalište V4 može imati do 3 500 t. Međutim, koncesijska područja se također razlikuju proporcionalno uzgojnoj količini. Naime, gustoća uzgajanih riba je jednaka u oba uzgajališta. To znači da je emisija po m³ približno jednaka. Prema tome, ni jedno od dva uzgajališta ne može povećati koncentraciju
Studija utjecaja na okoliš

ukupnog fosfora u vodenom stupcu za više od 20 % na samom izvoru, a raspršenjem se ta koncentracija vrlo brzo smanjuje na 3 μgP/l.

Uzgajalište V4 ima značajno širi profil pa će ono po širini zahvatiti veće područje utjecaja. Međutim slično kao i u slučaju Lukovog Šugarja, povećana koncentracija ukupnog fosfora neće se moći mjeriti dalje od 500 m niz morsku struju. Prema tome utjecaj Lukovog Šugarja na uzgajalište V4 biti će zanemariv. Također utjecaj uzgajališta V4 na uzgajalište Lukovo Šugarje će također biti zanemariv jer je udaljenost među njima 5 puta veća od dosega mjerljivog utjecaja.

Raspršenje ukupnog dušika je slično ukupnom fosforu s razlikom da je maksimalna emisija 469 kg N/dan a koncentracija 3,6 μg N/l iznad prirodne na uzgajalištu te da je prirodna koncentracija ukupnog reaktivnog dušika 15,2 μg N/l. Dakle, koncentracija sa uzgajališta je za oko 24 % viša nego prirodna koncentracija. To znači da se utjecaj neće moći mjeriti na udaljenosti većoj od 500 m u smjeru NW-SE.

Gornji rezultati pokazuju da se na relativno maloj udaljenosti od uzgajališta utjecaj brzo gubi, zbog advekcije, turbulentne difuzije, otapanja i tonjenja čestica.

Uzgajališta V1 i V2

Uzgajališta V1 i V2 su postavljena na ponešto dubljem moru. Tako lokacija V1 ima dubinu od 58 do 100 m a lokacija V2 dubinu od 61 do 76 m. Stoga ćemo za simulaciju uzeti dubinu od 70 m.

Nadalje, uzgajališta V1 i V2 imaju 5 puta manju populaciju riba pa prema tome i jednako toliko manji dotok organske tvari u morski stupac. Međutim, unutar uzgajališta je koncentracija organske tvari jednako povišena kao kod uzgajališta V3 i V4 odnosno za 20 % veća koncentracija ukupnog fosfora nego u okolnom moru.

Dimenzije uzgajališta V1 i V2 su također oko 5 puta manje nego kod uzgajališta V3 i V4. Tako uzgajališta V1 i V2 imaju dužinu od 300 m a širinu od 110 m. Dubina kaveza je jednaka uzgajalištima V3 i V4, a iznosi 50 m.
Studija utjecaja na okoliš

Uz zadanu struju uzrokovano plimom i osekom, simulacija utjecaja u vodenom stupcu je prikazana na slici 4_3.

Slika 4_3 Polje povećane koncentracije ukupnog fosfora za sloj mora koji je jednak dubini kaveza u slučaju struje uzrokovane plimom (lijevo) i osekom (desno)

Zaključak: Mjerljiv utjecaj od povećanja dotoka fosfora i dušika na uzgajalištima V3 i V4 bit će ograničen na područje do 500 m, u smjeru polarizirane morske struje NW-SE paralelno s obalom. Ljeti navedeni utjecaj neće postojati uz površinu već na dubini od oko 30 m, odnosno ispod termokline. Stoga što se ljeti ribe nalaze ispod termokline gdje je more hladnije i manje slano.
Mjerljiv utjecaj uzgajališta V1 i V2 od povećane koncentracije organske tvari odnosno ukupnog fosfora, postojat će do 300 m u smjeru polarizirane morske struje uzrokovane plimom i osekom koja je paralelna s obalom.
Uz obalu, utjecaj uzgajališta V1, V2, V3 i V4 neće biti mjerljiv.
Studija utjecaja na okoliš

Disperzija i taloženje izlučevina na dno

Jedan dio izlučevina će se istaložiti na dno. Imajući na umu da su izlučevine pastrvi u formi niti i izduženih traka, suglasno literaturnim podacima, samo će se od 5 % do 60 % tvari istaložiti na dno. Točan postotak je funkcija dubine i temperature: u plitkom moru će se istaložiti više a u dubljem i toplijem moru će se do dna otopiti više te manje istaložiti. Ostalo će se otopiti u vođenom stupcu.

Uzmemo li jednu jedinicu mase izlučevina i pustimo je s visine centra mase jata ribe da se taloži na dno, istaložena površina će ovisiti o horizontalnoj brzini struje, horizontalnoj turbulentnoj difuziji, vertikalnoj brzini tonjenja izlučevina, vertikalnoj turbulentnoj difuziji, o brzini otapanja te o dubini vođenog stupca od točke puštanja do dna. Kako nam je brzina otapanja kao funkcija dubine i temperature nepoznata, razdijelit ćemo dio koji će se otopiti u stupcu i dio koji će stići na dno.

Metode procjene utjecaja

Stohastički model disperzijskih procesa vezan na sedimentaciju može se opisati sljedećim trodimenzionalnim generatorom čiji je pripadni Markovljev proces nekonzervativan:

\[A = \left(\frac{\partial^2}{\partial x^2} \right) \partial_x^2 + \left(\frac{\partial^2}{\partial y^2} \right) \partial_y^2 + \left(\frac{\partial^2}{\partial z^2} \right) \partial_z^2 - v_x \partial_x - v_y \partial_y - (v_z + v_t) \partial_z \]

gdje je \(v_t \) – brzina sedimentacije.

U generatoru (2) nije uzeto u obzir otapanje čestice koja tone. Na gornjem rubu je uzet uvjet refleksije, a dno čestice absorbira.

Parametri za procjenu

Znajući da je dubina kaveza 50 m, pretpostaviti ćemo da su ribe koncentrirane u točki 20 m od površine, a da je dubina na mjestu uzgajališta 60 m na uzgajalištima V3 i V4 te 70 m na uzgajalištima V1 i V2.

Neka se po vertikali uspostavilo srednje strujanje od 5 cm/s u smjeru NW a na dubini od 20 m se smjer okreće u kompenzacijsku struju koja ima najvišu vrijednost od 4 cm/s (slika 4.4).

Slika 4.4 Vertikalna razdioba rezidualne horizontalne brzine struje u vodenom stupcu na uzgajalištima V3 i V4.

Za koeficijent horizontalne turbulentne difuzije uzeta je vrijednost od 1,45 m²/s što odgovara vrijednosti za Velebitski kanal suglasno formuli Okuba (Okuba, 1980). Pretpostavljen koeficijent vertikalne turbulentne difuzije je 10 cm²/s (Van Rijn i Tan, 1985). U Velebitskom kanalu koeficijent vertikalne turbulentne difuzije nije mjerjen, no pretpostavljamo da je značajno manji nego na mjestima s većim plimnim oscilacijama, kao što je to na primjer na ušću rijeke Mersey gdje je Bowden (1960) izračunao vrijednosti od 27 cm²/s do 30 cm²/s.

Za brzinu tonjenja izlučevina je uzeta vrijednost od 5,2 cm/s suglasno srednjoj vrijednosti koja je izmjerena u laboratorijskim uvjetima (Moccia i sur., 2007).
Rezultat procjene

Iz brzine tonjenja i dubine, slijedi da će izlučevina stići na dno za 12,8 min. Rezultantna disperzija čestica na dnu je prikazana na slici 4.5.

Slika 4.5 Tonjenje fecesa uz difuziju i a) konstantnu struju usmjerenu u SE smjeru, b) periodičnu struju u smjeru NW-SE. U slučaju a) je pretpostavljen veći koeficijent horizontalne difuzije.

Za usporedbu, u eksperimentu tonjenja fecesa sa brzinom 0,64 ± 0,05 cm/s kroz vodeni stupac dubine od 20 m iz uzgajališta brancina i orade nađene su slijedeće raspodjele:

Tablica 4.1 Fluks depozicije na dno u gramima suhe tvari/m²/dan u odnosu na udaljenost od uzgajališta brancina i orada (Jusup i sur., 2009).

<table>
<thead>
<tr>
<th>Distance (m)</th>
<th>Sediment traps 1</th>
<th>Sediment traps 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 m</td>
<td>55.24</td>
<td>54.30</td>
</tr>
<tr>
<td>8 m</td>
<td>34.00</td>
<td>34.92</td>
</tr>
<tr>
<td>12 m</td>
<td>15.28</td>
<td>9.33</td>
</tr>
<tr>
<td>20 m</td>
<td>15.30</td>
<td>13.46</td>
</tr>
<tr>
<td>40 m</td>
<td>9.25</td>
<td>8.90</td>
</tr>
</tbody>
</table>
Iz eksperimenta vidimo da na udaljenosti od 40 m, fluks depozicije iznosi oko 16 % fluksa uz rub mreže uzgajališta što je posljedica raspršenja i otapanja u vodenom stupcu. Ta je činjenica ključna u procjeni fluksa na dno ispod uzgajališta s obzirom da nam je naveći fluks iz uzgajališta poznat.

Najveći fluks ugljika prema dnu kroz površinu uzgajališta iznosi 4,93 g C/m²/dan. Fluks je najveći jer je pretpostavljeno da ništa od uzgajališta ne prolazi horizontalno u vodeni stupac već da je cijeli fluks koncentriran prema dnu. Tada bi, sukladno rezultatima eksperimenta, najveći fluks na dno iznosio 0,89 g C/m²/dan.

Procjena utjecaja se odnosi na izravni utjecaj na dno tijekom rada uzgajališta.

Sličnosti i razlike depozicije na dno s uzgajalištem Lukovo Šugarje

Na slici 4.5 je prikazana horizontalna raspodjela dotoka ugljika na dno ispod uzgajališta Lukovo Šugarje.

Slika 4.5 Horizontalna distribucija dotoka ugljika na dno gdje su sa visine od 35 m iznad dna puštane čestice koje tonu brzinom od 4,5 cm/s
Vrh predviđene distribucije dotoka ugljika na dno iznosi 1 g C/m²•dan, a distribucija je pomaknuta u smjeru SE (smjer pridnene rezidualne struje) za oko 50 m. Područje utjecaja iznad 0,2 g C/m²•dan seže do 260 m u smjeru pridnene struje i do 80 m u smjeru površinske struje. Valja napomenuti da je na slici 4_5 dotok na dno precijenjen jer nije uzeto u obzir otapanje izlučevina pastrva koje je značajno.

Veća dubina lokacije omogućuje niži najveći dotok na dno po m² i prema tome bolje uvjete za razgradnju dospjelog materijala, te manju akumulaciju.

Mjerenja brzine struje pokazuju da je struja nestalna ali jako polarizirana u smjeru NW-SE, koji je paralelan s obalom. U slučaju intenzivnog vjetra, površinska struja je okrenuta niz vjetar dok se u dubljem sloju javlja kompenzacijska struja koja je po intenzitetu manja od površinske. Jedinična površina dna u blizini kaveza će svakako trpiti niži dotok na lokacijama na kojima je dubina veća, a dubina raste od obale prema kanalu, no na tim će lokacijama doseg utjecaja biti ponešto veći.

U svakom slučaju, malo je vjerojatna realna situacija gdje će se utjecaj na dno moći pratiti na udaljenostima većim od 500 m. Na toj udaljenosti ronilac neće moći uočiti promjene na sedimentu, stoga što će procesima bioturbacije, razgradnje i remineralizacije, s njegove površine biti uklonjeni tragovi istaloženog fecesa.

Akumulacija u sedimentu

Silvert i Sowles (1986) su pokazali da je brzina dekompozicije dušikovih spojeva u nataloženom fecesu, sastavljena od dva dijela. Prvi doprinos brzini potječe od prirodnog procesa dekompozicije i emisije u vodeni stupac koji postoji na površini sedimenta bez donosa organske tvari od ribogojilišta. Drugi, dominantan dio dekompozicije, remineralizacije i emisije u vodeni stupac doći će od dotoka organske tvari nataložene na sedimentu porijeklom iz uzgajališta. Taj drugi dio brzine nije proporcionalan brzini donosa iz vodenog stupca već masi organske tvari na dnu.

Jednadžba akumulacije dušika (N) na dnu, dana je s:

\[
\frac{dN}{dt} = S - r N
\] \hspace{1cm} (3)
gdje je \(S \) (g N/m\(^2\)dan) dotok čestica na dno, a \(r \) (1/dan) je specifična brzina nestanka dušika iz sedimenta (zbroj specifičnih brzina mineralizacije, resuspendije i dekompozicije organske tvari bogate dušikovim spojevima).

Vidimo da bez donosa iz vodenog stupca, koncentracija dušika teži prema nuli sa specifičnom brzinom nestanka koja je jednaka \(r \) odnosno monotono padajućim fluksom ekstinkcije \(r \) N. Uz donos \(S \), koncentracija na dnu raste do veličine \(N* = S/r \) koja predstavlja asimptotsko stacionarno stanje. Uz najveći donos od 0,22 g N/m\(^2\)dan i specifičnu brzinu ekstinkcije od \(r = 0,015 \) (1/dan) (Blackburn i Henriksen, 1983), slijedi da će asimptotska vrijednost u vrhu distribucije na dnu, najdalje 50 m daleko od akvakulture, biti najviše oko 15 g N/m\(^2\).

Najveći mogući dotok organskog ugljika iz uzgajališta je 4,9 g C/m\(^2\)dan. Kako je feces pastrva lako razgradljiv samo će oko 16 % stići na dno, što znači da očekujemo dotok na dno od oko 0,784 g C/m\(^2\)dan. Silvert i Sowles (1986) pišu da je dotok od 2,5 g C/m\(^2\)dan prihvatljivo obogaćenje sedimenta jer unos s ribogojilišta ne bi smio preći 70 % potencijala za razgradnju i prema tome hipoksiju. Dotok na dno ribogojilišta V4 će imati oko 30 % od prihvatljivog dotoka koji navode Silvert i Sowles (1986).

Praktično ista situacija se očekuje na uzgajalištima V2 i V3 jer imaju isti kapacitet, dubinu oko 60 m, istu maksimalnu gustoću riba te sličan intenzitet i usmjerenje morske struje. Uzgajalište V1 ispred uvala Trsina i Tvrđuša imat će još manji dotok na dno jer je najdublje (između 60 i 100 m).

Na koncu citiramo rezultate monitoringa uzgajališta do 10 000 t sa istom tehnologijom uzgoja u fjordovima Norveške:

„Na temelju izvješća napravljenih putem trenutnog sustava praćenja, smatra se da je stanje lokacija s mekim dnom dobro u svim proizvodnim područjima u Norveškoj, a rizik od neprihvatljivih utjecaja na okoliš zbog emisije organskih čestica je nizak (Mowi, 2020).“

Zaključak: Utjecaj na sediment će postojati, no kako je dno na dubini od 60 m i više, te stoga što se izlučevine pastrva uglavnom otapaju u vodenom stupcu, utjecaj će biti prihvatljivo mali. Hipoksija na dnu se ne očekuje. Nadalje, utjecaj na sediment će biti ograničen unutar koncesijskog područja i u njegovoj neposrednoj blizini. Osim negativnog utjecaja na sediment u smislu akumulacije fosfora, dušikovih spojeva, ugljika i ostalih hranjivih tvari, utjecaj na podržavanje veće biomase pridnenih organizama biti će pozitivan.

Utjecaj na sanitarnu kakvoću vode

Izlučevine pastrva koje će se pojaviti i zadržati u vodenom stupcu potaknuti će, između ostalog, i razvoj morskih heterotrofnih bakterija. Stoga će u području utjecaja njihova koncentracija narasti. Kako se koncentracija organske tvari disperzijom razrjeđuje, a bakterije organsku tvar razgrađuju, njihova će koncentracija s udaljenošću od uzgajališta padati, a povećanje se očekuje samo u području povećanih koncentracija izlučevina, znači najviše do 500 m u smjeru NW-SE. Potencijalni utjecaj na sanitarnu kakvoću vode uz obalu ne postoji, prvo zato što koncentracija morskih bakterija neće značajno narasti uz obalu, i drugo stoga što one nisu indikatori sanitarne kakvoće morske vode. Naime, sukladno Uredbi o kakvoći mora za kupanje (NN, 2008) mikrobiološki pokazatelji kakvoće mora su crijevni enterokoki i Escherichia coli. Ovi mikroorganizmi se ne nalaze u crijevima kalifornijske pastrve koja se uzgaja jer se ona hrani ekstrudiranim hranom. Međutim, E. coli je nađena u ribama koje se uzgajaju u integriranim akvakulturama gdje se plankton koristi kao hrana za ribe, a njegov se rast stimulira svinjskim gnojivom (Dand i Dalsgaard, 2012).

4.2.4. Utjecaj na fitoplankton

Kako je u ovom poglavlju već istaknuto, najveći utjecaj na okoliš je emisija izlučevina pastrva koja će obogatiti okoliš hranjivim tvarima. Porast koncentracije hranjivih soli pospješuje razvoj autotrofnih planktonskih algi kremenjašica (dijatomeje). Porast koncentracije organske tvari može potaknuti razvoj miksotrofnih planktonskih alga (dinoflagelati, krizofice,
prasinoficeje), među kojima postoje vrste čije stanice mogu sintetizirati toksine. Fitoplanktonski toksini opasniji su za uzgoj školjkaša koji filtriranjem akumuliraju toksine i prenose ih na potrošače.

U Jadranu je prisutno 15 potencijalno toksičnih vrsta dinoflagelata. U Sredozemlju se širi rasprostranjenost i omogućava razvoj toksičnih vrsta zbog izgradnje sve većeg broja objekata kao što su luke, kupališta i drugi objekti koji smanjuju cirkulaciju vode i u kojima se održavaju pogodni uvjeti za njihov razvoj (Garcés i sur., 2000). Otrovn dinoflagelati uzrokuju najveći broj trovanja posredno preko školjkaša i riba. Toksini koje luče dinoflagelati, mogu inhibirati razvoj susjednih algi - njihove kompetitore (Rengefors i Legrand, 2001).

Ribe nisu toliko osjetljive na toksine kao školjkaši (odnosno filtratori). Međutim, intenzivni razvoj dijatomeja ili mikrootrofnih alga (cvjetanje fitoplanktona), najčešće djeluje tako da oslobađa još veće količine organske tvari, što može dovesti do opadanja koncentracije kisika u vodi.

Riblja mlad je osjetljivija na prisutstvo određenih vrsta fitoplanktona i na ekološke promjene nego odrasla riba. Međutim, krizno stanje kao što je cvjetanje fitoplanktona može negativno utjecati na odrasle ribe, tako što je moguće začepljenje škrga, a može prethoditi pojačanoj mikrobiološkoj potrošnji kisika i stvaranju hipoksije.

Uz obale Velebitskog kanala postoji pojačan dotok slike vode vruljama, pa se u tako stratificiranom sustavu mogu pojavljivati potpovršinska cvjetanja fitoplanktona. Takva cvjetanja nisu vidljiva s površine jer se javljaju neposredno iznad halokline, gdje vladaju povoljni svjetlosni uvjeti, povoljnija dinamika vodenih masa i povoljniji uvjeti prehrane za pojedine fitoplanktonske vrste. Potencijalni razvoj planktona uvjetovan izlučevinama pastrva je procijenjen, a vrijeme za koje stanice fitoplanktona apsorbiraju ponuđene hranjive soli dovoljno je kratko da će jedinke fitoplanktona zahvaćene u oblaku povećane koncentracije stići uzeti soli prije nego budu sasvim razrijeđene. Međutim, vrijeme za koje se stanice mogu podijeliti je dovoljno dugo da će se dijeljenje stanica dogoditi daleko niz dominantnu struju. Stoga je precizan utjecaj na povećanje broja stanica fitoplanktona teško kvantificirati.
4.2.5. Utjecaj na zooplankton

Na istraživanom području izrazita dominacija skupine kopepoda zimi, ukazuje na stabilnost sekundarne produkcije. Iz rezultata prethodnih istraživanja vidljivo je da najveće promjene u sastavu i gustoći populacija nastaju tijekom ljetnih mjeseci. Direktan utjecaj zooplanktona na uzgajalište se ne očekuje, jer su jedinke zabilježenih vrsta premale i premale gustoće da bi direktno utjecale na pastrve. Također, ne očekuje se da će prirodni zooplankton imati ulogu u ishrani pastrva, jer su jedinke utvrđenih vrsta zooplanktona premale i prerijetke. Posredni utjecaj uzgajališta na zooplankton dolazi iz unosa tvari koje mogu izazvati povećanu biomasu primarnih producenata (fitoplanktona), koju biljojedi (prvenstveno kopepodi) ne mogu u potpunosti pratiti.

4.2.6. Utjecaj na životne zajednice nektona

Utjecaj nektonskih riba na uzgajalište, kao i onih riba koje značajno dio vremena provode u stupcu vode, bit će vrlo malen i može se ocijeniti kao koristan za uzgajalište. Očekuje se povremeni ulazak malih „divljih“ riba (gavuni, gire) kroz oka mreže. Ako se nadu u blizini većih pastrva one će ih pojesti. Korisno je i to što će se neke ribe hraniti obraštajem, smanjujući tako njegovu količinu. Kompeticija za riblju hranu između pastrva i divlje ribe se ne očekuje, jer ribe slične veličine kao pastrve u kavezu, ne mogu ući unutra.

Utjecaj uzgajališta na ribe u stupcu vode se očekuje i može se ocijeniti kao koristan. Uz podmorske instalacije svih uzgajališta na Jadranu skupljaju se ribe pa će tako biti i na predmetnim lokacijama. Očekuje se da će uzgajališta privući plove bukvi Boops boops, crnelja Chromis chromis, gira Maena smaris, možda ušata Oblada melanura te salpa Sarpa salpa. Ove ribe će uz uzgajalište prvenstveno nalaziti zaklon, a neke će se tamo i hraniti. Bukve, gire i crnelji hraniti će se malim životinjama obraštaja, a salpe će se hraniti algama. U svakom slučaju, u širem području uzgajališta se očekuje porast količine riba.

4.2.7. Utjecaj na životne zajednice bentosa

Očekuje se utjecaj na bentos ispod uzgajališta. Utjecaj će se očitovati kroz unos ličinki bentoskih organizama koje će se prihvaćati na podmorske dijelove uzgajališta. i tu stvarati
Studija utjecaja na okoliš

obrašta. Iako se u blizini uzgajališta uz obalu nalaze samo pojedinačne dagnje, zbog njihovog velikog fekunditeta očekuje se i velika količina mlađih školjkaša. Potvrda ovoj pretpostavci su ostaci nekadašnjeg malog uzgajališta dagnji u uvali Burnjača te promatranja na uzgajalištu Lukovog Šugarja kao i na drugim uzgajalištima.

Međutim, glavni utjecaj uzgajališta na bentos biti će rezultat unosa organske tvari, podložne procesima razgradnje, na relativno malom području. U sredini područja na koje padaju čestice iz uzgajališta u početku rada će nakupljanje organske tvari biti veće od mogućnosti prihvata i prerade od strane bentosa i stoga će biomasa organske tvari porasti. Na nataloženoj organskoj tvari mogu se razviti populacije heterotrofnih bakterija roda Beggiatoa čije pahuljaste nakupine smanjuju mogućnost ulaska svježe, kisikom bogate morske vode u sediment. Vitalnost faune će se smanjiti te time povećati nakupljanje organske tvari na površini sedimenta. Ova pojava zabilježena je i do predmetnih dubina mora (ispod uzgajališta), npr. u slučaju uzgajališta tuna kod otoka Fulija do 59 m, odnosno u akvatoriju s jakom pridnenom strujom kao npr. u slučaju uzgajališta brancina kod otočića Košara na dubini od 40 m. Proces slabljenja vitalnosti faune pa čak i ugibanje osjetljivih organizama počinje se odvijati već nekoliko tjedana nakon postavljanja uzgoja, a izraženiji je ljeti. Za mineralizaciju svježe uginulih organizama troše se dodatne količine kisika te može doći do djelomične zamjene prethodnog sastava bentosa drugim organizmima koji nisu osjetljivi na ovakvo taloženje organske tvari (Petricioli i sur., 1996; 2003; 2004). Također, mijenja se i sastav meiofaune. Stotinjak metara od uzgajališta u sastavu bentosa promjene će biti vrlo male.
Studija utjecaja na okoliš

U tablici 3_04 prikazana je ocjena o umjerenom stanju makroalgi u području 0422-VIK gdje se nalazi lokacija uzgajališta V1. U tom području, kao i u području V2 koje se nalazi u vodnom tijelu 0422-JVE podalje od uzgajališta prema obali očekuje se neznatno povećana prihrana makroalgi stoga će se njihov razvoj pospješiti iako ne očekujemo značajne promjene jer je utjecaj ograničen na doseg od 500 do najviše 1000 m i to paralelno uz obalu. Do makroalgi neposredno uz obalu povećana prihrana može stići samo lateralnom turbulentnom difuzijom.

4.2.8. Utjecaj na strogo zaštićene vrste

Strogo zaštićeni mekušci

Ne očekuje se značajan utjecaj na strogo zaštićene vrste mekušaca.

Strogo zaštićeni gmazovi

Utjecaja na strogo zaštićene morske kornjače neće biti, osim kao smetnja pri njihovom prolasku tim dijelom kanala. Međutim, kako na našim uzgajalištima nije zabilježeno zaplitanje kornjaća u mreže uzgajališta, držimo da će utjecaj biti zanemariv.

Strogo zaštićeni sisavci

Utjecaj na strogo zaštićene morske sisavce se ne očekuje osim kao smetnja pri njihovom prolasku tim dijelom kanala. Kako do sad nije zabilježeno zaplitanje u mreže uzgajališta te stradavanje dupina na uzgajalištima u nas, takav se događaj ne očekuje ni ovdje, stoga držimo da će utjecaj biti zanemariv.

Strogo zaštićene ptice

Utjecaj uzgajališta na strogo zaštićene ptice će postojati. Morske ptice koristit će uzgajališta kao potencijalan izvor hrane i kao odmoriste pri preletu. Manji broj ptica zadržavat će se povremeno u blizini uzgajališta i na njemu. Čim radnici napuste uzgajalište nakon punjenja hranilica, ptice će se pokušati domoći riblje hrane ili riba. Međutim, kako je uređaj za hranjenje zatvoren, utjecaj ptica na uzgajalište kao i utjecaj uzgajališta na ptice procjenjujemo zanemarivim.

Strogo zaštićene vrste Spermatophyta – sjemenjača
Utjecaj na strogo zaštićene morske cvjetnice *Posidonia oceanica* neće biti, jer one nisu uočene u širem području zahvata, dok su livade strogo zaštićene morske cvjetnice *Cymodocea nodosa* dovoljno udaljene da će taj utjecaj biti zanemariv.

4.2.9. Utjecaj na pomorski promet

Uzgajališta će biti smještena u Velebitskom kanalu, izvan granice ZOP-a, na udaljenosti od oko 320 m od obalne crte, i izvan granica utjecaja akvakultura na naselja. Prema važećoj prostorno-planskoj dokumentaciji, lokacije uzgajališta nalaze se izvan međunarodnih i unutarnjih plovnih puteva.

Iako se uzgajališta nalaze izvan plovnih puteva, postavljeni kavezi predstavljaju prepreku plovlilima, a ovaj utjecaj će ovisiti o sezoni, vremenskim prilikama i vrsti plovila.

Kako bi se osigurala sigurnost plovidbe, postavit će se sustav svjetlosnog označavanja, a lokacije uzgajališta će se ogласiti te unijeti u pomorske karte i ostale pomorske publikacije.

Postupajući na navedeni način, planirana uzgajališta neće ugrožavati sigurnost pomorskog prometa.

4.2.10. Utjecaj na krajobraz

Planirana uzgajališta nalaze se na prostoru koje prema krajobraznoj regionalizaciji Republike Hrvatske pripada krajobraznoj jedinici Kvarnersko-velebitski prostor. Prostorna obilježja ovog prostora su prirodna staništa u kojima dominira kamenjar s autohtonom vegetacijom na velebitskoj padini, odnosno kamenjar gotovo bez vegetacije na otocima Rabu i Pagu. U manjoj mjeri prisutni su antropogeni elementi, a najuočljiviji je linijski element prometnice koja se proteže duž priobalnog dijela Velebita – jadranske magistrale.

Planirane uzgojne instalacije predstavljaju novi antropogeni element u prostoru. S obzirom da uzgojne instalacije predstavljaju plošni element odnosno prozračnu konstrukciju na morskoj plohi, iste neće značajno dolaziti do izražaja budući da će biti vidljive s relativno malih udaljenosti. Iako će planirane uzgojne instalacije donijeti novi antropogeni element ovom gotovo prirodnom području, ne očekuju se znacajne izmjene u doživljanju prostora kao što se ne očekuje značajan negativan utjecaj na krajobraz.
4.2.11. Utjecaj na stanovništvo

Uzgajališta kalifornijske pastrve administrativno su smještena na području Grada Senja i Općine Karlobag. Sve lokacije planiranih uzgajališta smještene su izvan naseljenih područja. Prema važećoj prostorno-planskoj dokumentaciji, na širem području kopnenog dijela ne planira se razvoj novih građevinskih područja naselja ili turističkih sadržaja koji bi mogao imati negativan utjecaj na stanovništvo ili turističke djelatnosti tih područja. Iako ovo područje tradicionalno nema značajno razvijeno ribarstvo i marikulturu, uspostava planiranih uzgajališta predstavljaće izvor sredstava jedinici lokalne samouprave, ali i stanovnicima u obliku mogućnosti zaposlenja ili u obliku poticaja razvoja drugih pratećih djelatnosti. Dugoročno, uz uvjet dobrog planiranja daljnog razvoja jedinice lokalne samouprave i dobrog upravljanja gospodarskim resursima, ova i daljnje slične investicije mogu pozitivno doprinijeti smanjenju trenda pada broja stanovnika.

4.2.12. Utjecaj zahvata na klimatske promjene – emisije stakleničkih plinova

Utjecaj zahvata na klimatske promjene razmatra se sa stajališta udjela zahvata u emisiji stakleničkih plinova. U dokumentu kojeg je izdala Europska Investicijska Banka (European Investment Bank Induced GHG Footprint – The carbon footprint of projects financed by the Bank: Methodologies for the Assessment of Project GHG Emissions and Emission Variations, Version 10.1.), navode se zahvati za koje je potrebno napraviti procjenu emisije stakleničkih plinova i zahvati za koje nije potrebno napraviti procjenu s obzirom na razmjer emisije koji pojedini zahvati mogu uzrokovati. Prema Tablici 4_2 navedenog dokumenta, za zahvate marikulture nije potrebno izrađivati procjenu emisije stakleničkih plinova. Najveći doprinos emisiji stakleničkih plinova proizlazi iz prometa odnosno sagorijevanja goriva. Za potrebe rada uzgajališta koristit će se motorna plovila te se očekuje nastanak i emisija ispušnih plinova. S obzirom na povremenu i vremensku ograničenost korištenja motornih vozila, emisija ispušnih plinova je zanemariva stoga se ne očekuje ni značajan utjecaj na povećanje stakleničkih plinova.
4.2.1.3 Utjecaj klimatskih promjena na zahvat
Utjecaj klimatskih promjena na zahvat obradit će se prema dokumentu Europske komisije „Neformalni dokument – Smjernice za voditelje projekata: Kako povećati otpornost ranjivih ulaganja na klimatske promjene“ u kojem je opisana metodologija procjene utjecaja klime i pretpostavljenih klimatskih promjena na buduće infrastrukturne zahvate.
U nastavku je dana analiza klimatske otpornosti kroz analizu osjetljivosti zahvata na klimatske promjene, procjena izloženosti zahvata, procjena ranjivosti zahvata na klimatske promjene i procjena rizika.

Analiza osjetljivosti zahvata na klimatske promjene
Osjetljivost planiranog zahvata na ključne klimatske čimbenike procjenjuju se kroz četiri ključne teme – postrojenja i procesi (uzgojne instalacije i infrastruktura), ulaz (mlad, hrana), izlaz (izlovljena riba) te promet, koje se vrednuje kako je prikazano:

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Osjetljivost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nema je ili je zanemariva</td>
<td>Umjerena</td>
</tr>
<tr>
<td>Visoka</td>
<td></td>
</tr>
</tbody>
</table>
Studija utjecaja na okoliš

U nastavku je dana analiza osjetljivosti planiranog zahvata na primarne i sekundarne klimatske efekte kroz četiri ključne teme.

<table>
<thead>
<tr>
<th>Primarni klimatski efekti</th>
<th>Postrojenja i procesi (PiP)</th>
<th>Ulaz (U)</th>
<th>Izlaz (I)</th>
<th>Promet (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Povišenje srednje temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Povišenje ekstremnih temperatura</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Promjene u prosječnoj količini oborine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Promjene u ekstremnim oborinama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Promjena srednje brzine vjetra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Promjena maksimalnih brzina vjetra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Vlažnost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Sunčevo zračenje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sekundarni klimatski efekti</th>
<th>Postrojenja i procesi (PiP)</th>
<th>Ulaz (U)</th>
<th>Izlaz (I)</th>
<th>Promet (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Promjena duljine sušnih razdoblja</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Promjena razine mora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Promjena temperature mora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Dostupnost vode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Oluje</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Plavljenje morem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 pH mora</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Poplave</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Obalna erozija</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Erozija tla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Zaslanjivanje tla</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Šumski požari</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Kvaliteta zraka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Procjena izloženosti zahvata

Nakon analize osjetljivosti zahvata na klimatske promjene, procjenjuje se izloženost zahvata na opasnosti koje su vezane za klimatske uvjete na lokaciji. Procjena se odnosi na izloženost opasnostima koje mogu biti uzrokovane klimatskim faktorima u sadašnjoj i budućoj klimi pri čemu se uzimaju u obzir klimatske promjene na lokaciji zahvata.

Izloženost zahvata vrednuje se na sljedeći način:

<table>
<thead>
<tr>
<th>Oznaka</th>
<th>Izloženost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nema je ili je zanemariva</td>
<td></td>
</tr>
<tr>
<td>Umjerena</td>
<td></td>
</tr>
<tr>
<td>Visoka</td>
<td></td>
</tr>
</tbody>
</table>
Studija utjecaja na okoliš

U nastavku je prikazana sadašnja i buduća izloženost zahvata prema klimatskim varijablama i s njima povezanim opasnostima za razdoblje od 100 godina.

<table>
<thead>
<tr>
<th>Primarni klimatski efekti</th>
<th>Sadašnja izloženost</th>
<th>Buduća izloženost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Povišenje srednje temperature</td>
<td>Uzgajalište je smješteno u području gdje prevladava sredozemno kišna klima koja se odlikuje suhim i vrućim ljetima i hladnim i vlažnim zimama. Prosječna temperatura zraka tijekom zime iznosi oko 10 °C, a u ljetnim oko 28 °C. Srednja godišnja temperatura iznosi 13,1 °C. U razdoblju od 1951. do 2010. statistički je zabilježeno povećanje temperature od 0,07 °C do 0,22 °C po dekadi duž hrvatske obale.</td>
<td>Prema projekcijama buduće klime na području Republike Hrvatske, u razdoblju od 2011. do 2040.) očekuje se povećanje srednje dnevne temperature od 0,4 do 0,6 °C zimi, a 1 do 1,2 °C ljeti.</td>
</tr>
<tr>
<td>Povišenje ekstremnih temperatura</td>
<td>Područje lokacije uzgajališta izložena je povišenju ekstremnih temperatura.</td>
<td>Može se očekivati povećanje broja vrućih dana kao i povišenje ekstremnih temperatura.</td>
</tr>
<tr>
<td>Promjene u prosječnoj količini oborine</td>
<td>Područje lokacije zahvata nije izloženo promjenama u prosječnoj količini oborina.</td>
<td>U budućem razdoblju (2011. do 2040.) može se očekivati smanjenje količine oborine za 0,1 do 0,2 mm/dan.</td>
</tr>
<tr>
<td>Promjena maksimalnih brzina vjetra</td>
<td>Prosječan godišnji broj dana s jakim vjetrom iznosi 13 dana, a s olujnim vjetrom 2 dana.</td>
<td>Mogu se očekivati promjene u maksimalnim brzinama vjetra kao rezultat promjene drugih meteoroloških parametara.</td>
</tr>
</tbody>
</table>

Sekundarni klimatski efekti
<table>
<thead>
<tr>
<th>Promjena duljine sušnih razdoblja</th>
<th>Postoji trend u promjenama duljine sušnih razdoblja iako trenutno nema značajnih utjecaja.</th>
<th>U budućem razdoblju očekuje se porast srednje dnevne temperature i smanjenje prosječne količine oborine što će dovesti do dužih sušnih razdoblja.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promjena temperature mora</td>
<td>Postoji trend povišenja temperature mora.</td>
<td>Može se očekivati povišenje temperature mora budući da se u narednom periodu očekuje povećanje srednje godišnje temperature zraka.</td>
</tr>
<tr>
<td>Oluje</td>
<td>Prosječan godišnji broj dana s olujnim vjetrom je 2 dana.</td>
<td>U narednom razdoblju može se očekivati povećan broj oluja kao rezultat promjena drugih meteoroloških parametara.</td>
</tr>
<tr>
<td>Promjena duljine godišnjih doba</td>
<td>Promjena duljine godišnjih doba može negativno utjecati na uzgoj budući na specifičnost uzgoja.</td>
<td>Produljenje toplog dijela godine može negativno utjecati na uzgoj.</td>
</tr>
</tbody>
</table>

Analiza ranjivosti

Analizi ranjivosti pristupa se ako je za određenu klimatsku varijablu ili opasnost utvrđena umjerena ili visoka osjetljivost zahvata na klimatske promjene. Na temelju spomenute analize osjetljivosti i analize izloženosti zahvata dobivaju se podaci za analizu ranjivosti.

Ranjivost (V) se računa prema formuli:

\[V = S \times E \]

gdje je S osjetljivost zahvata na klimatske promjene, a E izloženost zahvata klimatskim promjenama.
Ranjivost se nadalje klasificira prema matrici u nastavku:

<table>
<thead>
<tr>
<th>Osjetljivost/Izloženost</th>
<th>Zanemariva</th>
<th>Umjerena</th>
<th>Visoka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zanemariva</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Umjerena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visoka</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rezultati matrice ranjivosti prikazuju koji su umnošci najranjiviji na klimatske promjene.

U nastavku je prikazana analiza ranjivosti planiranog zahvata na osnovi rezultata iz prethodnih analiza, odnosno analize osjetljivosti i procjene izloženosti zahvata na klimatske promjene za postojeće buduće stanje.

Ranjivost za planirani zahvat – postojeće stanje

<table>
<thead>
<tr>
<th></th>
<th>Osjetljivost</th>
<th>Sadašnja izloženost</th>
<th>Sadašnja ranjivost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PiP U I P</td>
<td>PiP U I P</td>
<td>PiP U I P</td>
</tr>
<tr>
<td>Povišenje srednje temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Povišenje ekstremnih temperatura</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promjene u prosječnoj količini oborine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promjena duljine sušnih razdoblja</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promjena maksimalnih brzina vjetra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promjena temperature mora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oluje</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promjena duljine godišnjih doba</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ranjivost za planirani zahvat – buduće stanje

<table>
<thead>
<tr>
<th>Osjetljivost</th>
<th>Buduća izloženost</th>
<th>Buduća ranjivost</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>U</td>
<td>I</td>
</tr>
</tbody>
</table>

- **Povišenje srednje temperature**
- **Povišenje ekstremnih temperatura**
- **Promjene u prosječnoj količini oborine**
- **Promjene duljine sušnih razdoblja**
- **Promjena maksimalnih brzina vjetra**
- **Promjena temperature mora**
- **Oluje**
- **Promjena duljine godišnjih doba**

Procjena rizika
Rizik je kombinacija vjerojatnosti nastanka nekog događaja i posljedice tog događaja. Procjena rizika izrađuje se na temelju procjene ranjivosti zahvata za trenutno i buduće stanje te se izrađuje za one aspekte kod kojih su prethodnom analizom utvrđena visoka ranjivost. Analizom ranjivosti nije utvrđena visoka ranjivost ni za jedan klimatski faktor za sadašnje i buduće stanje te nije potrebno izrađivati procjenu rizika.

4.2.14 Utjecaj na dodatne prirodne resurse

Zahvatom se ne predviđa dodatna potreba za prirodnim resursima osim postojećeg zauzeća morskih staništa.
4.2.15 Opis utjecaja koji proizlaze iz podložnosti zahvata rizicima od velikih nesreća relevantnih za planirani zahvat

Do većih onečišćenja koje mogu imati štetne posljedice za zdravlje ljudi, materijalna dobra, prirodu i okoliš, može doći uslijed izljeva ulja i goriva iz motornih plovila koja opslužuju uzgajalište. Kako bi se vjerojatnost ovakvih događaja spriječila, potrebno je koristiti ispravnu i redovno servisiranu mehanizaciju i plovila kako je već navedeno. Ukoliko do toga ipak dođe, korištenjem interventnih mjera i procedura propisanih županijskim Planom intervencija kod iznenadnog onečišćenja mora, mogući negativni učinci će se umanjiti. Moguće je da se tijekom rada uzgajališta, uslijed jakog vjetra, otkine dio kaveza. Kavezi će plutati i mogu predstavljati opasnost za pomorski promet. Kako su velikog promjera, vidljivi su na moru i sudar plovila je manje vjerojatan. Veća mogućnost je nasukavanje kaveza na obalu te može doći do oslobađanja riba iz kaveza i zaplanovanje mreža za dno ili obalu. Ukoliko dođe do pucanja kaveza i bijega ribe, količina iste će ovisiti o stadiju uzgoja. Bez obzira na količinu, zbog načina hranjenja u jatu, u zbivenom prostoru s intenzivnim hranjenjem, vjerojatno će se ribe i dalje zadržati oko kaveza neko kratko vrijeme. Najčešće se onda upotrijebite velike mreže s kojima se zapaše odbijala riba te ponovno vratiti nazad u prethodno pripremljene kaveze. Ovo se do sada pokazalo dosta uspješnom tehnikom koja je izrazito isplativa te umanjuje utjecaj ove vrste rizika. Osim materijalne štete za vlasnika uzgajališta, značajniji utjecaj na okoliš u slučaju ovakvog incidenta se ne očekuje. Vjerojatnost nastanka ove situacije je vrlo mala obzirom na pravilno dimenzioniranjem i korištenjem opreme koja onemogućava pucanje i otkidanje uzgajališta.

Moguća su uginuća većeg broja riba u kratkom vremenskom razdoblju uslijed izbijanja bolesti, što može utjecati i na okolno more. U tom slučaju, uginulu ribu će se odmah sakupiti i ukloniti sukladno Zakonu o veterinarstvu (NN 82/13, 148/13,115/18). S obzirom na to da se radi o modernom uzgajalištu, vjerojatnost za ovakve događaje je izuzetno mala. Ukoliko bi i došlo do ovakvih izvanrednih situacija, korištenjem interventnih mjera i propisanih procedura, mogući negativni učinci mogu se spriječiti ili značajno umanjiti te se ne očekuje veći utjecaj.
4.2.16 Utjecaj na štete i koristi za društvo

Rad ovih uzgajališta ne predstavlja štetu za društvo. Upravo obrnuto, u slabo naseljenom području rad uzgajališta predstavlja izvor sredstava za jedinicu lokalne samouprave kao i mogućnost zaposlenja za stanovništvo te mogući poticaj razvoja i drugih djelatnosti.

4.2.17 Utjecaj buke

Najviše dopuštene razine vanjske buke koja se javlja kao posljedica rada su određene člankom 17. „Pravilnika o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave“ (NN 145/2004).

4.2.18 Utjecaj na vodocrpilišta

Na cijelom području sva četiri zahvata postoji jedno povremeno aktivno vodocrpilište. Izvorište Bačvica koji se nalazi 2 km sjeverozapadno od lokacije V2, te više od 16 km od lokacija V1 i V3. Taj izvor se samo povremeno koristi i iako je imao problem sa zaslanjivanjem uslijed hidrogeoloških odnosa u njegovom vodonosniku nije moguć negativni utjecaj ribogojilišta na njega.
4.3. MEĐUSOBNI I KUMULATIVNI UTJECAJI

Kako bi se procijenio skupni utjecaj, u obzir su uzeta postojeća i planirana uzgajališta na širem području zahvata, tj. ona koja se prostorno gledano nalaze u radijusu od oko 10 km od predmetnih zahvata.

Svi planirani zahvati (slika 4_1) se nalaze udaljeni jedan od drugoga i zbog toga je njihov međusobni utjecaj zanemariv. Najблиže su locirana polja V3 i V4 koja su udaljena 6 km, dok je najveća udaljenost između polja V2 i V3, a prelazi 20 km. Najблиže postojeće uzgajalište se nalazi u Lukovom Šugarju (slika 4_1) i ono je 2,5 km udaljeno od lokacije V4. Uzgajalište Jablanac nalazi se nešto više od 7 km udaljeno od lokacija V1 i V2.

S obzirom na konfiguraciju Velebitskog kanala i način uzgoja ribe, kako je gore pokazano, ne očekuju se značajni skupni utjecaji u smislu da jedno uzgajalište utječe značajno na susjedna uzgajališta.
Razmatranje kumulativnog utjecaja na akvatorij Velebitskog kanala se provodi u smislu povećanja eutrofikacije, utjecaja na dno i utjecaja na bioraznolikost.

Sukladno činjenici da je fitoplankton ograničen dotokom fosfora, provodimo analizu za fosfor. Dotok fosfora u Velebitski kanal, ne računajući dotoke vrulja koje u kanalu nisu zanemarive, ali je dotok nepoznat, iznosi 5 200 kg P/dan. Ukupan dotok od sva četiri uzgajališta iznosi najviše 193 kg P/dan. Prema tome ukupno povećanje dotoka fosfora u Velebitski kanal će iznositi najviše 3,7%. Owiatt i suradnici (1986) su eksperimentom utvrdili da je, u situacijama kada su koncentracije nutrijenata bile povećane 32 puta, uslijedilo povećanje primarne produkcije samo 3,5 puta. Iz toga slijedi povećanje primarne produkcije za najviše 0,4% što je doista zanemarivo.

Tablica 4_2 Ukupna godišnja opterećenja od uzgoja

<table>
<thead>
<tr>
<th>Ukupno godišnje maksimalno opterećenje fosforom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uzgajalište</td>
</tr>
<tr>
<td>kgP/god</td>
</tr>
</tbody>
</table>

S obzirom da se ne očekuju površinski cvatovi fitoplanktona većih razmjera kao ni anoksija u vodenom stupcu pri dnu, držimo da su dotoci od uzgajališta korisno povećanje eutrofikacije inače oligotrofnog mora Velebitskog kanala.

Utjecaj na dno valja razmatrati u smislu ometanja organizama u životnoj zajednici ispod uzgajališta. Zajednica ispod uzgajališta je tipična zajednica morskog pijeska opisana u sekciji 3.5.1. Životne zajednice bentosa. Neki organizmi u sedimentu ispod uzgajališta će se izmjestiti, a novi će se tamo naseliti i povećati svoje populacije.

Utjecaj na bioraznolikost valja promatrati kako u stupcu mora tako i na dnu. U stupcu mora kao posljedica rada uzgajališta osjetiti će se blago povećanje eutrofikacije, a to znači neznatno više biomase fitoplanktona koji hrani zooplankton, pa tako i zooplanktona koji hrani ribe. Poznato je da visok stupanj eutrofikacije smanjuje bioraznolikost, ali je također poznato da ovako malo povećanje donosa hranjivih tvari povećava bioraznolikost (Katavić, 2003; Irigoien i sur., 2004; Corcora i Boeing, 2012; Pinckney i Richardson, 2016), prema tome utjecaj na bioraznolikost u morskom stupcu će biti pozitivan.

Zaklučak:
Za vrijeme rada sva četiri uzgajališta u Velebitskom kanalu očekuje se neznatno povećanje eutrofikacije inače oligotrofnog mora Velebitskog kanala. S obzirom da je neznatna šansa za površinske cvatnje fitoplanktona većih razmjera kao i pojavu anoksije u vodenom stupcu ili pri dnu, s tim da će dotok iz uzgajališta povećati prihranu svih trofičkih nivoa u kanalu, držimo da je taj dotok korisno povećanje eutrofikacije kanala.

4.4. UTJECAJI NAKON PRESTANKA RADA UZGAJALIŠTA

Nakon prestanka rada uzgajališta, materijale i uređaje uzgajališta, ako se ne mogu koristiti na nekom drugom uzgajalištu, treba zbrinuti kao otpad u skladu sa Zakonom o gospodarenju otpadom (NN 84/21) odnosno razvrstati prema vrsti otpada te predati ovlaštenim sakupljačima. Radi se slijedećim otpadu:

- 04 02 09 otpad od mješovitih (kompozitnih) materijala (impregnirani tekstil, elastomeri, plastomeri)
- 17 01 01 beton
- 17 02 03 plastika
- 17 04 05 željezo i čelik

Ukoliko se neće iskoristiti na nekom drugom uzgajalištu, a radi se o kavezima za uzgoj ribe, i sustavu za sidrenje istog, može ih se predati ovlaštenom sakupljaču.

Nakon uklanjanja materijala i uređaja uzgajališta započinje proces oporavka okoliša. U kontekstu krajobraznih vrijednosti, odmah po uklanjanju uzgajališta, krajobraz se dovodi u prvotno stanje. To je zbog toga što su svi utjecaji uzgajališta na okoliš do kojih može doći tijekom rada uglavnom reverzibilni te će se nakon uklanjanja kroz određeno vrijeme stanje u
Studija utjecaja na okoliš

okolišu vratiti u prvobitno. Morskim staništima je potreban duži vremenski period za oporavak i ovisi o tipu i osjetljivosti staništa.

Nakon prestanka rada uzgajališta, uzgojne instalacije će se u potpunosti ukloniti, a krajobraz vratiti u prvotno stanje.

U smislu utjecaja na vodeni stupac, kakvoća vode morskim strujama prelazi u stanje prije upotrebe od strane uzgajališta u roku od jednog sata.

Utjecaj na dno koje je na dubini od 60 do 100 m praktički nestaje unutar godinu dana.

4.5. Utjecaj uzgajališta u varijanti a) s postavljenim kavezima paralelno uz obalu

Ova varijanta se ne predlaže jer je nedvojbeno zaključeno da je ona inferiornija s obzirom na utjecaj na okoliš. Iz rezultata utjecaja na okoliš sa ortogonalno postavljenim redovima kaveza s obzirom na obalu je jasno:

a) **Intenzitet utjecaja na sediment ispod uzgajališta je veći od predložene varijante za sve lokacije** (Slika 3_20). Iz slike 4_1 je razvidno da manja dubina ispod uzgajališta ima veći fluks donosa organske tvari na dno. Naime, na lokaciji V1 dubina na kojoj se uzgajalište nalazi raste od 58 m najbliže obali do oko 90 m najdalje od obale, stoga bi uzgajalište sa kavezima paralelno uz obalu imalo značajno veći donos na dno ispod uzgajališta. Taj zaključak vrijedi i za lokacije V2, V3 i V4, iako je razlika manja s obzirom da dubina na tim lokacijama raste od obale ali ne tako naglo kao na lokaciji V1.

b) **Intenzitet utjecaja na vodeni stupac prema uzgajališta prema obali je veći od predložene varijante za sve lokacije.**

Ako bi se kavezi za uzgoj postavili u redovima paralelno uz obalu tada bi utjecaj bio četriri puta veći na lokacijama V1 i V2 te preko tri puta veći na lokacijama V3 i V4. Ovi rezultati proizlaze iz omjera širine i duljine uzgajališta te disperzije povišene kocentracije organske tvari prema obali.

c) **Intenzitet utjecaja uzgajališta na pridnene biocenoze je veći od predložene varijante**

Imajući na umu da koncentracija populacija i bioraznolikost pridnenih biocenoza raste od uzgajališta prema obali (sekcija 3.5.1) te s obzirom da povećani utjecaj donosa organske tvari na dno prema obali, slijedi da bi varijanta a) imala veći utjecaj na pridnene biocenoze od varijante b) koja se predlaže.
5. PRIJEDLOG MJERA ZAŠTITE OKOLIŠA I PROGRAM PRAĆENJA STANJA OKOLIŠA

5.1 Mjere tijekom postavljanja uzgojnih instalacija (kaveza)

- Radove postavljanja uzgojnih instalacija (kaveza) prijaviti Lučkoj kapetaniji koja će odrediti primjereni način označavanja radova (svjetla i/ili oznake) s ciljem uspostave sigurne plovidbe. Pridržavati se svih uvjeta o načinu označavanja radova prema odluci Lučke kapetanije.
- Prilikom provođenja podvodnih radova obilježiti područje postavljanjem plutače u sredini područja ronjenja, narančaste ili crvene boje, promjera najmanje 30 cm ili ronilačkom zastavicom (narančasti pravokutnik s bijelom dijagonalnom crtom) ili zastavicom "A" Međunarodnog signalnog kodeksa ili visoko istaknutom ronilačkom zastavom na plovilu sa kojeg se obavlja ronjenje. Ukoliko se radovi obavljaju noću, plutača mora imati svjetlo s bijelim ili žutim bljeskovima vidljivosti najmanje 300 m.
- Radove postavljanja sidra i blokova za sidrenje obavljati na način da se spriječi povlačenje istih po morskom dnu.
- Nakon završetka radova, a prije izdavanja uporabne dozvole, dostaviti Hrvatskom hidrografskom institutu elaborat izvedenog stanja.

Mjera iz prve točke proizlazi iz odredbi Pomorskog zakonika ("Narodne novine" broj 181/04, 76/07, 146/08, 61/11, 56/13, 26/15 i 17/19), osobito čl. 54.
Mjera iz druge točke proizlazi iz čl. 4 Pravilnika o obavljanju podvodnih aktivnosti ("Narodne novine" broj 47/99, 23/03, 52/03, 58/03, 96/10).
Mjera iz treće točke proizlazi iz Zakona o zaštiti okoliša ("Narodne novine" broj 80/13, 153/13, 78/15, 12/18, 118/18) osobito čl. 25 i Zakona o zaštiti prirode ("Narodne novine" broj 80/13, 15/18, 14/19, 127/19).
Mjera iz četvrte točke proizlazi iz Zakona o hidrografskoj djelatnosti ("Narodne novine" broj 68/98, 110/98, 163/03, 71/14), osobito čl. 11.a.
5.2 Mjere tijekom korištenja

Otpad

- Otpadna životinjska tkiva privremeno skladištiti u hladnjači, a zatim predati ovlaštenom sakupljaču.
- Opasan otpad odvojeno prikupljati i skladištiti u posebnim spremnicima, a zatim ga predati ovlaštenom sakupljaču.
- Ambalažni otpad, ovisno o vrsti, odvojeno prikupljati u spremnike, a zatim predati ovlaštenom sakupljaču.
- Komunalni otpad prikupljati u za to predviđene spremnike i predavati ovlaštenom sakupljaču.

Mjere iz druge, treće i četvrte točke proizlaze iz čl. 44, 45, 47 i 54 Zakona o gospodarenju otpadom ("Narodne novine" broj 84/21).

Biljni i životinjski svijet

- Nije dozvoljena upotreba protuobraštajnih sredstava na uzgojnim instalacijama.
- Uklanjanje obraštaja na uzgojnim instalacijama u zoni intenzivnog prihvata. Ukoliko se potpiše komercijalni ugovor s proizvođačem školjkaša, njemu će se povjeriti briga oko sakupljanja dagnje za koju se očekuje najveći udio u obraštaju te uklanjanja ostalog obraštaja.
- Ptice koje se okupljaju na području uzgajališta se ne smiju tjerati metodama koje ih mogu ozlijediti ili ubiti.
- Sredstva za liječenje riba koristiti isključivo uz dopuštenje ovlaštenog veterinara.
- Svakodnevno pregledavati kaveze i mreže.
- Odbjeglu ribu vraćati mrežama u kaveze.
Mjera iz prve točke proizlazi iz Zakona o zaštiti okoliša ("Narodne novine" broj 80/13, 153/13, 78/15, 12/18, 118/18) osobito čl. 25.

Mjera iz druge točke proizlazi iz Zakona o zaštiti prirode ("Narodne novine" broj 80/13, 15/18, 14/19, 127/19), osobito čl. 66 i 153.

Mjera iz treće točke proizlazi iz Zakona o veterinarstvu ("Narodne novine" broj 52/21).

5.3 Mjere u slučaju izvanrednih situacija

- U slučaju izlijevanja goriva ili ulja u more poduzeti odgovarajuće mjere odnosno postupati u skladu s Planom intervencija kod iznenadnih onečišćenja mora ("Narodne novine" broj 92/08).
- U slučaju otkidanja konstrukcijskih dijelova i/ili opreme uzgajališta, obavijestiti nadležnu lučku kapetaniju.
- U slučaju iznenadnog smanjenja koncentracije otopljenog kisika u površinskom sloju morske vode (ispod 75%), neoobičajenog ponašanja riba ili pojave bolesti riba, odmah prekinuti hranjenje i poduzeti odgovarajuće mjere s ciljem otklanjanja uzroka.
- U slučaju pojave masovnog ugibanja ribe, uginule ribe odmah sakupiti i utvrditi uzrok uginuća. S uginulom ribom, ovisno o kategoriji otpada, postupiti sukladno važećim propisima.
- Povremeno provjeravati sidrenje kaveza (sidreni tegovi i sidreni lanci).
- Pripremiti kaveze i velike mreže za odbjeglu ribu.
- U slučaju otkidanja cijelog kaveza ili dijela uzgajališta, obavijestiti sve nadležne službe, npr. Lučka kapetanija
- Izraditi plan premještanja kaveza u slučaju izvanrednih situacija otkidanja kaveza, a sve u skladu s a Županijskim interventnim planom.

Mjera iz prve točke proizlazi iz čl. 25 i 57 Zakona o zaštiti okoliša ("Narodne novine" broj 80/13, 153/13, 78/15, 12/18, 118/18) i čl. 49.h. Pomorskog zakonika ("Narodne novine" broj 181/04, 76/07, 146/08, 61/11, 56/13, 26/15 i 17/19).

Mjera iz druge točke proizlazi iz odredbi Pomorskog zakonika ("Narodne novine" broj 181/04, 76/07, 146/08, 61/11, 56/13, 26/15 i 17/19).

Mjera iz treće točke proizlazi iz Uredbe o standardu kakvoće voda ("Narodne novine" broj 96/19) i čl. 18 Zakona o veterinarstvu ("Narodne novine" broj 52/21).
Mjera iz četvrte točke proizlazi iz odredbi Zakona o veterinarstvu ("Narodne novine" broj 52/21).

5.4 Mjere nakon prestanka rada uzgajališta

- Nakon prestanka rada ukloniti sve podmorske i nadmorske dijelove uzgajališta. Ako se isti ne mogu upotrijebiti za neko drugo uzgajalište, dijelove uzgajališta predati ovlaštenom sakupljaču.

Mjera iz prve točke proizlazi iz Zakona o zaštiti okoliša ("Narodne novine" broj 80/13, 153/13, 78/15, 12/18, 118/18), čl. 4 Zakona o zaštiti prirode ("Narodne novine" broj 80/13, 15/18, 14/19, 127/19) i Zakona o gospodarenju otpadom ("Narodne novine" broj 84/21).
6. PROGRAM PRAĆENJA STANJA OKOLIŠA

6.1 Praćenje utjecaja zahvata

Monitoring ili program praćenja stanja okoliša temelji se na očekivanim utjecajima predviđenog zahvata na okoliš, te se provodi kako bi se procijenilo jesu li promjene nastale kao posljedica zahvata ili ne. Također, monitoring omogućuje da se zaštitne mjere pravovremeno primjene kako ne bi došlo do značajnih utjecaja na okoliš. Program praćenja stanja okoliša potrebnog je provoditi svake godine od uspostavljanja uzgajališta. Nakon tri godine potrebno je napraviti usporedbu novonastalog stanja s onim prije početka rada uzgajališta, te po potrebi revidirati program daljnjeg praćenja.

Praćenje stanja okoliša potrebno je provoditi prema zadanoj programu (tablica 6_2) i na zadanim lokacijama (Slika 6_1).

- Jednom godišnje, u vremenskom razdoblju od srpnja do listopada, mjeriti sljedeće parametre vodenog stupca: koncentracije hranjivih soli (amonijak, nitrite, nitrate, fosfate i silikate) na dubinama od 1 m, 20 m i 45 m (100 m sjeverozapadno i 100 m jugoistočno od zadnjih kaveza (Slika 6_1)). Mjeri se gustoća populacija fitoplanktona (Utermöhl) na dubinama 0, 5, 10, 20 i 40 m 100 m sjeverozapadno i 100 m jugoistočno od zadnjih kaveza (Slika 6_1).

- Jednom godišnje, u vremenskom razdoblju od srpnja do listopada, mjeriti sljedeće parametre sedimenta: redoks potencijal, ukupni organski ugljik, organski dušik, ukupni fosfor i bakar. Redoks potencijal izmjeriti u prvih 10 cm sedimenta svaki centimeter, dok ostale navedene parametre izmjeriti u uzorcima površinskog (prvih 5 cm) sedimenta. Uzorke sedimenta za sva navedena mjerenja prikupiti na sljedeći način: jedan uzorak na 25 m od AZE (Allowable Zone of Efffect) što se računa od ruba kaveza, te tri uzorka u zoni od 100 m do 1 000 m (slika 6_1) od zadnjih kaveza na sličnoj dubini i dnu kao što je ispod kaveza (ISO 12878:2012 for benthic sampling methodology) u oba pravca paralelno s obalom (Tablica 6_1).

- Analizu bentskih zajednica prema obali potrebno je napraviti jedanput godišnje.

- Vertikalni profil koncentracije i zasićenja otopljenog kisika mjeriti u jutarnjim satima (oko 8 h).

- Mjeriti prozirnosti Secchijevom pločom.

- Pratiti živi svijet, u prvom redu neuobičajeno ponašanje riba

- Provjeravati morski okoliš na prisustvo kalifornijske pastrve.
Slika 6_1 Skice uzgajališta V1, V2, V3 i V4 s označenim točkama praćenja stanja. (plave točke su za uzorkovanje vode, a crvene za uzorkovanje sedimena)

Tablica 6_1 Koordinate postaja uzorkovanja sedimanta u HTRS96_Croatia_TM formatu

<table>
<thead>
<tr>
<th>V1</th>
<th>V1-1</th>
<th>V1-2</th>
<th>V1-3</th>
<th>V1-4</th>
<th>V1-5</th>
<th>V1-6</th>
<th>V1-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>371908,7792</td>
<td>371990,1913</td>
<td>371995,1394</td>
<td>372004,4527</td>
<td>372055,7954</td>
<td>372112,9455</td>
<td>372007,9587</td>
</tr>
<tr>
<td>y</td>
<td>4959693,821</td>
<td>4959001,422</td>
<td>4958834,749</td>
<td>4958664,542</td>
<td>4958098,295</td>
<td>4957653,794</td>
<td>4958374,943</td>
</tr>
<tr>
<td>V2</td>
<td>V2-1</td>
<td>V2-2</td>
<td>V2-3</td>
<td>V2-4</td>
<td>V2-5</td>
<td>V2-6</td>
<td>V2-7</td>
</tr>
<tr>
<td>x</td>
<td>377019,6413</td>
<td>376873,8033</td>
<td>376720,8273</td>
<td>376260,2632</td>
<td>377126,7536</td>
<td>377084,4202</td>
<td>377190,2537</td>
</tr>
<tr>
<td>y</td>
<td>4944426,608</td>
<td>4944545,542</td>
<td>4944682,689</td>
<td>4945089,116</td>
<td>4943786,268</td>
<td>4944124,935</td>
<td>4943458,184</td>
</tr>
</tbody>
</table>
Tablica 6_2 Prijedlog programa praćenja za uzgajališta V1, V2, V3 i V4

<table>
<thead>
<tr>
<th>Pokazatelj</th>
<th>Učestalost</th>
<th>Broj postaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUPAC MORSKE VODE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miris</td>
<td>svakodnevno</td>
<td>-</td>
</tr>
<tr>
<td>Vidljive plivajuće tvari</td>
<td>svakodnevno</td>
<td>-</td>
</tr>
<tr>
<td>Temperatura</td>
<td>jednom tjedno</td>
<td>1</td>
</tr>
<tr>
<td>Ksik</td>
<td>jednom tjedno</td>
<td>1</td>
</tr>
<tr>
<td>Salinitet</td>
<td>jednom tjedno</td>
<td>1</td>
</tr>
<tr>
<td>Prozirnost</td>
<td>jednom mjesečno</td>
<td>1</td>
</tr>
<tr>
<td>Koncentracija hranjivih soli (amonijak, nitriti, nitrati, fosfati i silikati)</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>2</td>
</tr>
<tr>
<td>fitoplankton</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>2</td>
</tr>
<tr>
<td>SEDIMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redoks potencijal</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>7</td>
</tr>
<tr>
<td>Koncentracija ukupnog organskog ugljika</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>7</td>
</tr>
<tr>
<td>Koncentracija ukupnog organskog dušika</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>7</td>
</tr>
<tr>
<td>Koncentracija ukupnog fosfora</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>7</td>
</tr>
<tr>
<td>Koncentracija ukupnog bakra</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>7</td>
</tr>
<tr>
<td>OSTALO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponašanje riba (stanje, apetit, rast, bolesti),</td>
<td>svakodnevno</td>
<td>-</td>
</tr>
<tr>
<td>Pregled pobjegle ribe van kaveza</td>
<td>svakodnevno</td>
<td>-</td>
</tr>
<tr>
<td>Bentoske zajednice</td>
<td>jednom godišnje (srpanj-listopad)</td>
<td>1</td>
</tr>
<tr>
<td>Nakupljanje sluzavih agregata na mrežnim tegovima</td>
<td>jednom tjedno</td>
<td>-</td>
</tr>
</tbody>
</table>
6.2 PLANIRANA SURADNJA NOSITELJA ZAHVATA S JAVNOŠĆU
Tvrtka ADRIATIC FARMING d.o.o. namjerava imati otvorene odnose s javnošću, uspostavljenim već u pripremnoj fazi projekta. Navedeno uključuje kontakte kroz osobnu komunikaciju djelatnika s lokalnom zajednicom, konferencije za medije, kao i uporabu elektroničkih medija i društvenih mreža.

6.3 PROCJENA TROŠKOVA MJERA ZAŠTITE I MONITORINGA
Provodenje redovitih mjera zaštite okoliša predstavlja sastavni dio tehnologije proizvodnje na kaveznom uzgajalištu riba te su sukladno tome i uključeni odgovarajući troškovi u cijenu investicije i troškove pogona. Kako o vrsti događaja ovise mjere zaštite u incidentnim situacijama, nije pouzdano prognozirati odgovarajuće troškove. Najčešće je udio troškova u mjerama zaštite u marikulturnim projektima od 2 do 4 %, sukladno svjetskim iskustvima. Monitoring ili program praćenja stanja okoliša preduzim je tako da se pojedine mjere praćenja uključuju ukoliko se za njih i pojavi potreba. Prema tome teško je precizno prognozirati odgovarajuće troškove, međutim planirani trošak osnovnog monitoringa, može se procijeniti na oko 200 000 kuna godišnje za jednu lokaciju.
7. NAZNAKE MOGUĆIH POTEŠKOĆA

Tijekom izrade ove Studije, na raspolaganju je bila sva projektna i tehnička dokumentacija na temelju koje je opisan zahvat uzgoja kalifornijske pastrve na četiri lokacije; Uvale Trsine i Tvrduša (V1), Uvale Bočarije i Bilančevica (V2), Uvale Velika i Mala Črnika(V3) i Uvale Marasovka i Pečci (V4). Uz prethodno navedeno, korišteni su i svi raspoloživi postojeći podaci na temelju kojih su se procijenili utjecaji na pripadajuće sastavnice okoliša, te predložile mjere zaštite okoliša i program praćenja stanja okoliša za planirani zahvat kaveznog uzgoja kalifornijske pastrve.

Nikakve poteškoće nisu zabilježene.
Studija utjecaja na okoliš

8. IZVORI PODATAKA

Propisi

- Zakon o prostornom uređenju („Narodne novine“ broj 153/13, 65/17, 114/18, 39/19, 98/19)
- Zakon o akvakulturi („Narodne novine“ broj 130/17, 111/18, 144/20)
- Zakon o zaštiti okoliša („Narodne novine“ broj 80/13, 153/13, 78/15, 12/18, 118/18)
- Zakon o gradnji („Narodne novine“ broj 153/13, 20/17, 39/19)
- Zakon o zaštiti prirode („Narodne novine“ broj 80/13, 15/18, 14/19, 127/19)
- Zakon o zaštiti zraka („Narodne novine“ broj 130/11, 47/14, 61/17, 127/19)
- Zakon o veterinarstvu („Narodne novine“ broj 52/21)
- Zakon o prostornom uređenju („Narodne novine“ broj 153/13, 65/17, 114/18, 39/19)
- Zakon o gospodarenju otpadom („Narodne novine“ broj 84/21)
- Zakon o vodama („Narodne novine“ broj 66/19)
- Zakon o zaštiti od buke („Narodne novine“ broj 30/09, 55/13, 153/13, 41/16, 114/18)
- Zakon o hidrografskoj djelatnosti („Narodne novine“ broj 68/98, 110/98, 1 63/03, 71/14)
- Zakon o zaštiti i očuvanju kulturnih dobara („Narodne novine“ broj 69/99, 151/03, 157/03, 100/04, 87/09, 88/10, 61/11, 25/12, 136/12, 157/13, 152/14, 98/15, 44/17, 90/18, 32/20)
- Pravilnik o katalogu otpada („Narodne novine“ broj 90/15)
- Pomorski zakonik („Narodne novine“ broj 181/04, 76/07, 146/08, 61/11, 56/13, 26/15 i 17/19)
- Pravilnik o obavljanju podvodnih aktivnosti („Narodne novine“ broj 47/99, 23/03, 52/03, 58/03, 96/10)
- Uredba o procjeni utjecaja zahvata na okoliš („Narodne novine“, broj 61/14, 03/17)
- Uredba o kategorijama, vrstama i klasifikaciji otpada s katalogom otpada i listom opasnog otpada („Narodne novine“, broj 50/05, 39/09)
- Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže („Narodne novine“, broj 80/19)
- Uredba o standardu kakvoće voda („Narodne novine“, broj 96/19)
- Uredba (EZ) br. 1069/2009 Europskog parlamenta i Vijeća od 21. listopada 2009. o utvrđivanju zdravstvenih pravila za nusproizvode životinjskog podrijetla i od njih
doživene proizvode koji nisu namijenjeni prehrani ljudi te o stavljanju izvan snage Uredbe (EZ) br. 1774/2002 (Uredba o nusproizvodima životinjskog podrijetla) (SL L 300, 14. 11. 2009., sa svim izmjenama i dopunama)

- Uredba Komisije (EU) br. 142/2011 od 25. veljače 2011. o provedbi Uredbe (EZ) br. 1069/2009 Europskog parlamenta i Vijeća o utvrđivanju zdravstvenih pravila za nusproizvode životinjskog podrijetla i od njih doživene proizvode koji nisu namijenjeni prehrani ljudi i o provedbi Direktive Vijeća 97/78/EZ u pogledu određenih uzoraka i predmeta koji su oslobodeni veterinarnih pregleda na granici na temelju te Direktive (SL L 54, 26. 2. 2011., sa svim izmjenama i dopunama)

- Uredba o kakvoći mora za kupanje, („Narodne novine“ broj 73/2008)
- Plan intervencija kod iznenadnih onečišćenja mora („Narodne novine“ broj 92/08)
- Plan intervencija u zaštiti okoliša („Narodne novine“ broj 82/99, 86/99, 12/01)
- Plan upravljanja vodnim područjima 2016. – 2021 („Narodne novine“ broj 66/16)
- Pravilnik o katalogu otpada („Narodne novine“, broj 90/15)
- Pravilnik o gospodarenju otpadom („Narodne novine“, broj 117/17)
- Pravilnik o popisu stanišnih tipova i karti staništa („Narodne novine“, broj 27/21)
- Pravilnik o strogo zaštićenim vrstama („Narodne novine“, broj 144/13, 73/16)
- Pravilnik o ciljevima očuvanja i mjerama očuvanja ciljnih vrsta ptica u područjima ekološke mreže („Narodne novine“, broj 25/2020, 38/2020)
- Pravilnik o kriterijima za utvrđivanje područja za akvakulturu na pomorskom dobru („Narodne novine“, broj 106/18)
- Pravilnik o veterinarsko-zdravstvenim uvjetima koje moraju ispunjavati objekti za uzgoj, proizvodnju i stavljanje u promet riba i proizvoda od riba te rakova i proizvoda od rakova („Narodne novine“, broj 148/99)
- Pravilnikom o registraciji subjekata i odobravanja objekata u kojima posluju subjekti u poslovanju s nusproizvodima životinjskog podrijetla koji nisu za prehranu ljudi („Narodne novine“, broj 20/10)
- Pravilnik o registraciji i odobravanju objekata u kojima posluju subjekti u poslovanju s hranom za životinje(„Narodne novine“, broj 72/08)
- Pravilnik o izmjenama i dopunama Pravilnika o monitoringu određenih tvari i njihovih rezidua u živim životinjama i proizvodima životinjskog podrijetla („Narodne novine“, broj 51/2013)
- Plan upravljanja vodnim područjima 2016. - 2021.
- Pravilnik o najvišim dopuštenim razinama buke s obzirom na vrstu izvora buke, vrijeme i mjesto nastanka („Narodne novine“, broj 143/2021)
- Popis stanovništva 2011., Državni zavod za statistiku
Studija utjecaja na okoliš

- Odluka o donošenju Plana upravljanja vodnim područjima 2016. – 2021. („Narodne novine", broj 66/16)
- Odluka o granicama vodnih područja („Narodne novine", broj 79/10)
- Odluka o određivanju osjetljivih područja („Narodne novine", broj 79/2022)
- Odluka o određivanju ranjivih područja u Republici Hrvatskoj („Narodne novine", broj 130/12)

Državni hidrometeorološki zavod, Srednje mjesečne vrijednosti i ekstremi, podaci za Senj u razdoblju od 1948-2019.

https://meteo.hr/klima.php?section=klima_podaci¶m=k1&Grad=senj
pristupljeno 03. veljače 2021.

Državni hidrometeorološki zavod, Ocjena mjeseča, sezone, godine, podaci za Senj u razdoblju od 2012-2020.

Državni hidrometeorološki zavod, Atlas vjetra, Srednja godišnja brzina vjetra na visini od 10 m iznad tla za razdoblje 1992-2001

European Investment Bank Induced GHG Footprint – The carbon footprint of projects financed by the Bank: Methodologies for the Assessment of Project GHG Emissions and Emission Variations, Version 10.1., European Investment Bank

Non-paper Guidelines for Project Managers: Making vulnerable investments climate resilient, European Climate adaptation platform

Rezultati klimatskog modeliranja na sustavu HPC Velebit za potrebe izrade nacrta Strategije prilagodbe klimatskim promjenama Republike Hrvatske do 2040. s pogledom na 2070. i Akcijskog plana (Podaktivnost 2.2.1.), EPTISA Adria d.o.o., Zagreb, 2017.

Izvještaj o procijenjenim utjecajima i ranjivosti na klimatske promjene po pojedinim sektorima, EPTISA Adria d.o.o., Zagreb, 2017.

Bioportal. Karta ekološke mreže Republike Hrvatske
Bioportal. Karta staništa Republike Hrvatske
Bioportal. Karta zaštićenih područja prirode Republike Hrvatske

238
• Elaborat zaštite okoliša u postupku ocjene o potrebi procjene utjecaja zahvata na okoliš, Uzgajalište pastrva u velebitskom kanalu – lokacija Lukovo Šugarje, IZMJENA ZAHVATA, Maxicon d.o.o., 2020, 105 str

• Elaborat zaštite okoliša u postupku ocjene o potrebi procjene utjecaja zahvata na okoliš, Uzgajalište pastrva u velebitskom kanalu – lokacija Kablanac, IZMJENA ZAHVATA, Maxicon d.o.o., 2020, 102 str

• Elaborat zona sanitarne zaštite Bačvice, Geo – 5 d.o.o. 2019, 95 str.

Prostorni planovi

• Prostorni plan Ličko-senjske županije („Županijski glasnik” broj 16/02, 17/02 – ispravak, 19/02 – ispravak, 24/02 – izmjene i dopune, 3/05 – usklađenje, 2/06 – I. izmjene i dopune, 15/06 – pročišćeni tekst, 19/07 – II. izmjene i dopune, 13/10 – III. izmjene i dopune, 22/10 – pročišćeni tekst, 19/11 – IV. izmjene i dopune, 4/15 – V. izmjene i dopune, 7/15 – pročišćeni tekst, 6/16 – VI. izmjene i dopune, 15/16 – pročišćeni tekst, 5/17 – VII. izmjene i dopune i 8/17 – pročišćeni tekst)

• Prostorni plan uređenja Grada Senja „Službeni glasnik Grada Senja” broj 11/06, 1/12, 6/14, 10/14 – pročišćeni tekst i 15/18)

• Prostorni plan uređenja Općine Karlobag („Županijski glasnik” broj 3/08 i 12/10)

Popis Literature

239

Moccia R., Bevan D i Reid G., Composition of feed and fecal waste from commercial trout farms in Ontario: Physical characteristics and relationship to dispersion and depositional modelling, University of Guelph, 2007.

OIKON. SUO studija utjecaja na okoliš uzgajališta pastrva u velebitskom kanalu – lokacija Jablanac, Zagreb (2004), 144 str.

OIKON, SUO studija utjecaja na okoliš uzgajališta pastrva u velebitskom kanalu – lokacija Lukovo Šugarje, Zagreb, (2003), 142 str.
Studija utjecaja na okoliš

Petricioli i sur., Izvješće o Praćenju stanja okoliša za uzgajalište bijele ribe na lokaciji kod otočića Školjić Veli. OIKON d.o.o., 2004.

242
Ministarstvo gospodarstva i održivog razvoja, na temelju odredbe članka 43. Zakona o zaštiti okoliša („Narodne novine“, broj 80/13, 153/13, 78/15 i 12/18) i članka 71. Zakona o izmjenama i dopunama Zakona o zaštiti okoliša („Narodne novine“, broj 118/18) u vezi s člankom 130. Zakona o općem upravnom postupku (Narodne novine, broj 47/09), rješavajući povodom zahtjeva ovlaštenika INSTITUT RUĐER BOŠKOVIĆ, Bijenička cesta 54, Zagreb, radi utvrđivanja promjena u popisu zaposlenika ovlaštenika, donosi:

RJEŠENJE

I. Ovlašteniku INSTITUT RUĐER BOŠKOVIĆ, Bijenička cesta 54, Zagreb, OIB: 69715301002 izdaje se suglasnost za obavljanje stručnih poslova zaštite okoliša prema članku 40. stavku 2. Zakona o zaštiti okoliša:

2. Izrada studija o utjecaju zahvata na okoliš, uključujući dokumentaciju za provedbu postupka ocjene potrebi procjene utjecaja zahvata na okoliš te dokumentacije za određivanje sadržaja studije o utjecaju na okoliš,

9. Izrada programa zaštite okoliša,

10. Izrada izvješća o stanju okoliša,

12. Izrada elaborata o zaštiti okoliša koji se odnose na zahvate za koje nije propisana obveza procjene utjecaja na okoliš,

21. Procjena šteta nastalih u okolišu uključujući i prijeteće opasnosti,

22. Praćenje stanja okoliša,

23. Obavljanje stručnih poslova za potrebe Registra onečišćavanja okoliša,

25. Izrada elaborata o usklađenosti proizvoda s mjerilima u postupku ishodenja znaka zaštite okoliša »Prijatelj okoliša« i znaka EU Ecolabel,

III. Ovo rješenje upisuje se u očevidnik izdanih suglasnosti za obavljanje stručnih poslova zaštite okoliša koje vodi Ministarstvo gospodarstva i održivog razvoja.

V. Uz ovo rješenje prileži Popis zaposlenika ovlaštenika i sastavni dio ovoga rješenja.

Obrázloženje

Uz zahtjev je stranka dostavila elektroničke zapise Hrvatskog zavoda za mirovinsko osiguranje i popis stručnih podloga (referencu) za voditelje dr.sc. Nevena Cukrova i dr.sc. Sunčana Geček u čijoj izradi su stručnjaci sudjelovali.

Slijedom navedenoga, utvrđeno je kao u točkama od I. do V. izreke ovoga rješenja.

UPUTA O PRAVNOJ LIJEKU:

Ovo rješenje je izvršno u upravnom postupku i protiv njega se ne može izjaviti žalba, ali se može pokrenuti upravni spor. Upravni spor pokreće se tužbom Upravnom sudu u Zagrebu, Avenija Dubrovnik 6, u roku 30 dana od dana dostave ovog rješenja. Tužba se predaje navedenom upravnom sudu neposredno u pisanom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

Upravna pristojba na zahtjev i ovo rješenje naplaćena je državnim biljezima sukladno Zakonu o upravnim pristojbama („Narodne novine“, broj 115/16) i Uredbi o tarifi upravnih pristojbi („Narodne novine“, broj 8/17, 37/17, 129/17, 18/19 97/19 i 128/19).

VIŠA STRUČNA SAVJETNICA

Davorka Maljak

U prilogu: Popis zaposlenika kao u točki V. izreke rješenja.

DOSTAVITI:

1. INSTITUT RUĐER BOŠKOVIĆ, Bijenička cesta 54, Zagreb, (RI, s povratnicom!)
2. Evidencija, ovdje
3. Državni inspektorat, Šubićeva 29, Zagreb
| STRUČNI POSLOVI ZAŠTITE OKOLIŠA
prema članku 40. stavku 2. Zakona | VODITELJI STRUČNIH POSLOVA | ZAPOSLENI STRUČNJACI |
|-----------------------------------|---------------------------|---------------------|
| 2. Izrada studija o utjecaju zahvata na okoliš, uključujući i dokumentaciju za provedbu postupka ocjene o potrebi procjene utjecaja zahvata na okoliš te dokumentacije za određivanje sadržaja studije o utjecaju na okoliš | dr. sc. Neven Cukrov
| 21. Procjena šteta nastalih u okolišu uključujući i prijetiće opasnosti | Voditelji navedeni pod točkom 2. | dr.sc. Jasmina Klanišček
dr.sc. Vlatka Filipović Marijić Damir Valić |
Ministarstvo gospodarstva i održivog razvoja temeljem članka 30. stavka 4. vezano za članak 29. stavak 1. podstavak 1. Zakona o zaštiti prirode (Narodne novine, br. 80/13, 15/18, 14/19 i 127/19), a povodom zahtjeva nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, zastupan putem opunomoćenika Institut Ruđer Bošković, Zavod za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb, za Prethodnu ocjenu prihvatljivosti za ekološku mrežu za zahvat Uzgajalište kalifornijske pastrve ispred uvala Trsina i Tvrduša nakon provedenog postupka, donosi

RJEŠENJE

I. Planirani zahvat - Uzgajalište kalifornijske pastrve ispred uvala Trsina i Tvrduša, nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, prihvatljiv je za ekološku mrežu.

II. Ovo Rješenje objavljuje se na internetskim stranicama Ministarstva.

III. Ovo rješenje izdaje se na rok od četiri godine.

Obrázloženje

U provedbi postupka ovo Ministarstvo je razmotrilo predmetni zahtjev i podatke o ekološkoj mreži (područja ekološke mreže, ciljeve očuvanja, ciljne vrste i ciljne stanišne tipove).

Zahvatom se planira uzgoj kalifornijskih pastvra u Velebitskom kanalu na lokaciji ispred uvale Trsina i Tvrduša. Kapacitet uzgoja će biti 3500 tona. Primjenjivat će se najsuvremenija tehnologija uzgoja kružnim kavezima s potpuno automatiziranim hranidbom i kontrolom. U
okviru uzgajališta izvest će se: platforme, mrežni kavezi, sidrena armatura, hranilice, brodovi, prateća oprema i prateći objekti na kopnu.

U provedbi postupka, analizom mogućih utjecaja, uzvodići u obzir karakteristiku zahvata (kavezni uzgoj ribe), da se uzgajalište nalazi izvan područja ekološke mreže (na udaljenosti od oko 70 metara) može se isključiti mogućnost značajnih negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže te je stoga riješeno kao u izreci. Sukladno navedenom za planirani zahvat nije potrebno provesti postupak Glavne ocjene prihvatljivosti za ekološku mrežu.

Točka II. ovoga Rješenja u skladu je s odredbom članka 43. stavka 1. Zakona o zaštiti prirode, kojom je propisano da se rješenje kojim je zahvat prihvatljiv za ekološku mrežu izdaje na rok od četiri godine.

Točka III. ovoga Rješenja u skladu je s odredbom članka 44. stavka 3. Zakona o zaštiti prirode, kojom je propisano da se rješenje iz postupka prethodne ocjene prihvatljivosti zahvata za ekološku mrežu objavljuje na internetskoj stranici Ministarstva.

Člankom 27. stavkom 2. Zakona o zaštiti prirode, propisano je da se za zahvate za koje je posebnim propisom kojim se uređuje zaštita okoliša određena obveza procjene utjecaja na okoliš, prethodna ocjena obavlja prije pokretanja postupka procjene utjecaja zahvata na okoliš.

Člankom 29. stavkom 1. podstavkom 1. Zakona o zaštiti prirode, propisano je da Ministarstvo provodi Prethodnu ocjenu za zahvate za koje središnje tijelo državne uprave nadležno za zaštitu okoliša provodi postupak procjene utjecaja na okoliš prema posebnom propisu iz područja zaštite okoliša.
U skladu s odredbama članka 44. stavka 2. Zakona o zaštiti prirode ovo Rješenje dostavlja se inspekciji zaštite prirode.

UPUTA O PRAVOM LIJEKU:
Ovo je rješenje izvršno u upravnom postupku te se protiv njega ne može izjaviti žalba, ali se može pokrenuti upravni spor pred upravnim sudom na području kojeg tužitelj ima prebivalište, odnosno sjedište. Upravni spor pokreće se tužbom koja se podnosi u roku od 30 dana od dana dostave ovog rješenja. Tužba se predaje nadležnom upravnom sudu neposredno u pisanom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

VIŠA STRUČNA SAVJETNICA

Marija Petras

DOSTAVITI:
1. NORDIC FISHER d.o.o., Nikole Tesle 46, 23000 Zadar (R spovratnicom);
2. Institut Rudera Boškovića, Zavod za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb (R spovratnicom);
3. Državni inspektorat, Inspekcija zaštite prirode, Šubićeva 29, 10000 Zagreb (elektroničkom poštom: pisarnica.dirh@dirh.hr);
4. U spis predmeta, ovdje.
Ministarstvo gospodarstva i održivog razvoja održavalo je temeljem članka 30. stavka 4. vezano za članak 29. stavak 1. podstavak 1. Zakona o zaštiti prirode (Narodne novine, br. 80/13, 15/18, 14/19 i 127/19), povodom zahtjeva nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, zastupan putem opunomoćenika Institut Ruđer Bošković, Zavod za istraživanje mora i okoliša, Laboratorija za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb, za Prethodnu ocjenu prihvatljivosti za ekološku mrežu za zahvat Uzgajalište kalifornijske pastre ispred uvala Bilančevica i Bočarije Vele nakon provedenog postupka, donosi

RJEŠENJE

I. Planirani zahvat - Uzgajalište kalifornijske pastre ispred uvala Bilančevica i Bočarije Vele, nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, prihvatljiv je za ekološku mrežu.

II. Ovo Rješenje objavljuje se na internetskim stranicama Ministarstva.

III. Ovo rješenje izdaje se na rok od četiri godine.

Obrázloženje

U provedbi postupka ovo Ministarstvo je razmotrilo predmetni zahtjev i podatke o ekološkoj mreži (područja ekološke mreže, ciljeve očuvanja, ciljne vrste i ciljne stanišne tipove).

Zahvatom se planira uzgoj kalifornijskih pastva u Velebitskom kanalu na lokaciji ispred uvala Bilančevica i Bočarije Vele. Kapacitet uzgoja će biti 3500 tona. Primjenjivat će se najsuvremenija tehnologija uzgoja kružnim kavezima s potpuno automatiziranom hranidbom i
kontrolom. U okviru uzgajališta izvest će se: platforme, mrežni kavezi, sidrena armatura, hranilice, brodovi, prateća oprema i prateći objekti na kopnu.

U provedbi postupka, analizom mogućih utjecaja, uzevši u obzir karakteristiku zahvata (kavezni uzgoj ribe), da se uzgajalište nalazi izvan područja ekološke mreže (na udaljenosti od oko 300 metara) i izvan doseg mogućih utjecaja može se isklučiti mogućnost značajnih negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže te je stoga riješeno kao u izreći. Sukladno navedenom za planirani zahvat nije potrebno provesti postupak Glavne ocjene prihvatljivosti za ekološku mrežu.

Točka II. ovoga Rješenja u skladu je s odredbom članka 43. stavka 1. Zakona o zaštiti prirode, kojom je propisano da se rješenje kojim je zahvat prihvatljiv za ekološku mrežu izdaje na rok od četiri godine.

Točka III. ovoga Rješenja u skladu je s odredbom članka 44. stavka 3. Zakona o zaštiti prirode, kojom je propisano da se rješenje iz postupka prethodne ocjene prihvatljivosti zahvata za ekološku mrežu objavljuje na internetskoj stranici Ministarstva.

Člankom 27. stavkom 2. Zakona o zaštiti prirode, propisano je da se za zahvate za koje je posebnim propisom kojim se uređuje zaštita okoliša određena obveza procjene utjecaja na okoliš, prethodna ocjena obavlja prije pokretanja postupka procjene utjecaja zahvata na okoliš.

Člankom 29. stavkom 1. podstavkom 1. Zakona o zaštiti prirode, propisano je da Ministarstvo provodi Prethodnu ocjenu za zahvate za koje središnje tijelo državne uprave nadležno za zaštitu okoliša provodi postupak procjene utjecaja na okoliš prema posebnom propisu iz područja zaštite okoliša.
U skladu s odredbama članka 44. stavka 2. Zakona o zaštiti prirode ovo Rješenje dostavlja se inspekciji zaštite prirode.

UPUTA O PRAVnom LJIKU:

Ovo je rješenje izvršno u upravnom postupku te se protiv njega ne može izjaviti žalba, ali se može pokrenuti upravni spor pred upravnim sudom na području kojeg tužitelj ima prebivalište, odnosno sjedište. Upravni spor pokreće se tužbom koja se podnosi u roku od 30 dana od dana dostave ovog rješenja. Tužba se predaje nadležnom upravnom sudu neposredno u pisanom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

VIŠA STRUČNA SAVJETNICA

Marija Petras

DOSTAVITI:

1. NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar (R spovrat)\n2. Institut Ruđer Bošković, Zavod za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb (R spovrat);\n3. Državni inspektorat, Inspekcija zaštite prirode, Šubičeva 29, 10000 Zagreb (elektroničkom poštom: pisarnica.dirh@dirh.hr);\n4. U spis predmeta, ovdje.
Ministarstvo gospodarstva i održivog razvoja temeljem članka 30. stavka 4. vezano za članak 29. stavak 1. podstavak 1. Zakona o zaštiti prirode (Narodne novine, br. 80/13, 15/18, 14/19 i 127/19), a povodom zahtjeva nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, zastupan putem opunomoćenika Institut Ruđer Bošković, Zavod za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb, za Prethodnu ocjenu prihvatljivosti za ekološku mrežu za zahvat Uzgajalište kalifornijske pastrve ispred uvala Črnika Velika i Mala nakon provedenog postupka, donosi

RJEŠENJE

I. Planirani zahvat - Uzgajalište kalifornijske pastrve ispred uvala Črnika Velika i Mala, nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, prihvatljiv je za ekološku mrežu.

II. Ovo Rješenje objavljuje se na internetskim stranicama Ministarstva.

III. Ovo rješenje izdaje se na rok od četiri godine.

Obrázloženje

Ministarstvo gospodarstva i održivog razvoja (u daljnjem tekstu Ministarstvo), zaprimilo je 16. lipnja 2021. godine zahtjev nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, podnesenog putem opunomoćenika Institut Ruđer Bošković, Zavoda za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb za Prethodnu ocjenu prihvatljivosti za ekološku mrežu za zahvat „Uzgajalište kalifornijske pastrve ispred uvala Črnika Velika i Mala“. U zahtjevu su sukladno odredbama članka 30. stavak 2. Zakona o zaštiti prirode navedeni svi podaci o nositelju zahvata, zahvatu, lokaciji zahvata i ekološkoj mreži.

U provedbi postupka ovo Ministarstvo je razmotrilo predmetni zahtjev i podatke o ekološkoj mreži (područja ekološke mreže, ciljeve očuvanja, ciljne vrste i ciljne stanišne tipove).

Zahvatom se planira uzgoj kalifornijskih pastva u Velebitskom kanalu na lokaciji ispred uvale Črnika Velika i Mala. Kapacitet uzgoja će biti 3500 tona. Primjenjivat će se najsuvremenija tehnologija uzgoja kružnim kavezima s potpuno automatiziranom hranidbom i kontrolom. U
okviru uzgajališta izvest će se: platforme, mrežni kavezi, sidrena armatura, hranilice, brodovi, prateća oprema i prateći objekti na kopnu.

U provedbi postupka, analizom mogućih utjecaja, uvezdu u obzir karakteristiku zahvata (kavezni uzgoj ribe), da se uzgajalište nalazi izvan područja ekološke mreže (na udaljenosti od oko 50 metara) može se isklučiti mogućnost značajnih negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže te je stoga riješeno kao u izreci. Sukladno navedenom za planirani zahvat nije potrebno provesti postupak Glavne ocjene prihvatljivosti za ekološku mrežu.

Točka II. ovoga Rješenja u skladu je s odredbom članka 43. stavka 1. Zakona o zaštiti prirode, kojom je propisano da se rješenje kojim je zahvat prihvatljiv za ekološku mrežu izdaje na rok od četiri godine.

Točka III. ovoga Rješenja u skladu je s odredbom članka 44. stavka 3. Zakona o zaštiti prirode, kojom je propisano da se rješenje iz postupka prethodne ocjene prihvatljivosti zahvata za ekološku mrežu objavljuje na internetskoj stranici Ministarstva.

Člankom 27. stavkom 2. Zakona o zaštiti prirode, propisano je da se za zahvate za koje je posebnim propisom kojim se uređuje zaštita okoliša određena obveza procjene utjecaja na okoliš, prethodna ocjena obavlja prije pokretanja postupka procjene utjecaja zahvata na okoliš.

Člankom 29. stavkom 1. podstavkom 1. Zakona o zaštiti prirode, propisano je da Ministarstvo provodi Prethodnu ocjenu za zahvate za koje središnje tijelo državne uprave nadležno za zaštitu okoliša provodi postupak procjene utjecaja na okoliš prema posebnom propisu iz područja zaštite okoliša.
U skladu s odredbama članka 44. stavka 2. Zakona o zaštiti prirode ovo Rješenje dostavlja se inspekciji zaštite prirode.

UPUTA O PRAVnom LIJEKU:

Ovo rješenje izvršno u upravnom postupku te se protiv njega ne može izjaviti žalba, ali se može pokrenuti upravni spor pred upravnim sudom na području kojeg tužitelj ima prebivalište, odnosno sjedište. Upravni spor pokreće se tužbom koja se podnosi u roku od 30 dana od dana dostave ovog rješenja. Tužba se predaje nadležnom upravnom sudu neposredno u pisanom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

DOSTAVITI:

1. NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar (R s povratnicom);
2. Institut Rudr Bošković, Zavod za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb (R s povratnicom);
3. Državni inspektorat, Inspekcija zaštite prirode, Šubićeva 29, 10000 Zagreb (elektroničkom poštom: pisarnica.dirh@dirh.hr);
4. U spis predmeta, ovdje.

VIŠA STRUČNA SAVJETNICA

Marija Petras
Ministarstvo gospodarstva i održivog razvoja temeljem članka 30. stavak 4. vezano za članak 29. stavak 1. podstavak 1. Zakona o zaštiti prirode (Narodne novine, br. 80/13, 15/18, 14/19 i 127/19), a povodom zahtjeva nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, zastupan putem opunomoćenika Institut Ruder Bošković, Zavod za istraživanje mora i okoliša, Laboratorija za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb, za Prethodnu ocjenu prihvatljivosti za ekološku mrežu za zahvat Uzgajalište kalifornijske pastrve ispred uvala Marasovka i Pećci nakon provedenog postupka, donosi

RJEŠENJE

I. Planirani zahvat - Uzgajalište kalifornijske pastrve ispred uvala Marasovka i Pećci, nositelja zahvata NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar, prihvatljiv je za ekološku mrežu.

II. Ovo Rješenje objavljuje se na internetskim stranicama Ministarstva.

III. Ovo rješenje izdaje se na rok od četiri godine.

Obrázloženje

U provedbi postupka ovo Ministarstvo je razmotrilo predmetni zahtjev i podatke o ekološkoj mreži (područja ekološke mreže, ciljeve očuvanja, ciljne vrste i ciljne stanja u tipove).

Zahvatom se planira uzgoj kalifornijskih pastrve u Velebitskom kanalu na lokaciji ispred uvale Marasovka i Pećci. Kapacitet uzgoja će biti 3500 tona. Primjenjivat će se najsuvremenija tehnologija uzgoja kružnim kavezima s potpuno automatiziranom hranidbom i kontrolom. U
okviru uzgajališta izvest će se: platforme, mrežni kavezi, sidrena armatura, hranilice, brodovi, prateća oprema i prateći objekti na kopnu.

U provedbi postupka, analizom mogućih utjecaja, uzvrstani u obzir karakteristiku zahvata (kavezni uzgoj ribe), da se uzgajalište nalazi izvan područja ekološke mreže (na udaljenosti od oko 50 metara) može se isključiti mogućnost značajnih negativnih utjecaja na ciljeve očuvanja i cjelovitost područja ekološke mreže te je stoga riješeno kao u izreci. Sukladno navedenom za planirani zahvat nije potrebno provesti postupak Glavne oocene prihvatljivosti za ekološku mrežu.

Točka II. ovoga Rješenja u skladu je s odredbom članka 43. stavka 1. Zakona o zaštiti prirode, kojom je propisano da se rješenje kojim je zahvat prihvatljiv za ekološku mrežu izdaje na rok od četiri godine.

Točka III. ovoga Rješenja u skladu je s odredbom članka 44. stavka 3. Zakona o zaštiti prirode, kojom je propisano da se rješenje iz postupka prethodne oocene prihvatljivosti zahvata za ekološku mrežu objavljuje na internetskoj stranici Ministarstva.

Člankom 27. stavkom 2. Zakona o zaštiti prirode, propisano je da se za zahvate za koje je posebnim propisom kojim se uređuje zaštita okoliša određena obveza procjene utjecaja na okoliš, prethodna ocjena objavljuje prije pokretanja postupka procjene utjecaja zahvata na okoliš.

Člankom 29. stavkom 1. podstavkom 1. Zakona o zaštiti prirode, propisano je da Ministarstvo provodi Prethodnu ocjenu za zahvate za koje središnje tijelo državne uprave nadležno za zaštitu okoliša provodi postupak procjene utjecaja na okoliš prema posebnom propisu iz područja zaštite okoliša.
U skladu s odredbama članka 44. stavka 2. Zakona o zaštiti prirode ovo Rješenje dostavlja se inspekcijski zaštite prirode.

UPUTA O PRAVNOJ LIJEKU:

Ovo rješenje izvršno u upravnom postupku te se protiv njega ne može izjaviti žalba, ali se može pokrenuti upravni spor pred upravnim sudom na području kojeg tužitelj ima prebivalište, odnosno sjedište. Upravni spor pokreće se tužbom koja se podnosi u roku od 30 dana od dana dostave ovog rješenja. Tužba se predaje nadležnom upravnom sudu neposredno u pisanom obliku, usmeno na zapisnik ili se šalje poštom, odnosno dostavlja elektronički.

VIŠA STRUČNA SAVJETNICA

Marija Petras

DOSTAVITI:

1. NORDIC FISH d.o.o., Nikole Tesle 46, 23000 Zadar (R s povratnicom);
2. Institut Ruđer Bošković, Zavod za istraživanje mora i okoliša, Laboratorij za biološke učinke metala, Bijenička cesta 54, 10000 Zagreb (R s povratnicom);
3. Državni inspektorat, Inspekcija zaštite prirode, Šubićeva 29, 10000 Zagreb (elektroničkom poštom: pisarnica.dirh@dirh.hr);
4. U spis predmeta, ovdje.
POTVRDU

o usklađenosti sa prostornim planovima za zahvat u prostoru:

Uzagjališta kalifornijske pastrve na četiri lokacije u Velebitskom kanalu, u Ličko-senjskoj županiji, pojedinačnog kapaciteta uzagjališta na području Grada Senja 700 t/god. i Općine Karlobag, kapaciteta 3.500 t/god.

I. Zahvat u prostoru: Uzagjališta kalifornijske pastrve na četiri lokacije u Velebitskom kanalu, u pogledu namjene, u skladu je sa slijedećim prostornim planovima:

- Prostornim planom uređenja Grada Senja ("Službeni glasnik Grada Senja" broj 11/06., 1/12., 6/14., 10/14.-pročišćeni tekst i 15/18.)

- Prostornim planom uređenja Općine Karlobag ("Županijski glasnik Ličko-senjske županije" broj 3/08. i 12/10.)

Skupština Ličko-senjske županije je donijela Odluku o izradi X. Izmjena i dopuna Prostornog plana Ličko-senjske županije ("Službeni glasnik", broj 32/19.).

Općinsko vijeće Općine Karlobag je donijelo Odluku o izradi II. Izmjena i dopuna Prostornog plana uređenja Općine Karlobag ("Službeni glasnik", broj 17/17.).
II. Usklađenost s prostornim planovima iz točke l. ove potvrde utvrđena je u vidu o:
 - Prostorni plan Ličko-senjske županije, grafički dio, kartografski prikaz 1.a Korištenje i
 namjena prostora i tekstualni dio, odredbe članaka 19., 32.-35.
 - Prostorni plan uređenja Grada Senja, grafički dio, kartografski prikaz 1. Korištenje i
 namjena površina i tekstualni dio, odredbe članka 64.
 - Prostorni plan uređenja Općine Karlobag, grafički dio, kartografski prikazi 1. Korištenje i
 namjena površina i tekstualni dio, odredbe članka 26.

III. Studija utjecaja na okoliš treba sadržavati izvode iz važećeg prostornog plana navedenog u
 točki l. ove potvrde te analizu usklađenosti zahvata sa istima vezano uz ograničenja iz
 prostornog plana, a što se posebice odnosi na kapacitete uzgajališta kao i odnos prema
 planiranim i postojećim zahvatima odnosno kumulativni utjecaj.

IV. Ova potvrda izdana je na temelju dostavljene elektroničkim putem Studije utjecaja na okoliš
 uzgajališta kalifornijske pasulture na četiri lokacije u Velebitskom kanalu izrađenom od strane
 INSTITUTA RUĐER BOŠKOVIĆ, HR-10000 Zagreb, Bijenička cesta 54, od prosinca 2021.
 godine i prilaže se uz zahtjev za provođenje postupka procjene utjecaja na okoliš za zahvat
 u prostoru: Uzagajališta kalifornijske pasulture na četiri lokacije u Velebitskom kanalu, na
 području Grada Senja i Općine Karlobag u Ličko-senjskoj županiji.

V. Ovom potvrdom se ne potvrđuje cjelovitost i stručna utemeljenost studije utjecaja na okoliš
 već činjenice utvrđene u gore navedenim točkama.

Oslabljeno od plaćanja upravne pristojbe prema Tarifnom broju 1. Uredbe o tarifi upravnih
pristojbi („Narodne novine“, broj 8/17. i 37/17.).

MINISTAR

Darko Horvat

DOSTAVITI:
1. INSTITUT RUĐER BOŠKOVIĆ, HR-10000
 Zagreb Bijenička cesta 54
2. Ministarstvo gospodarstva i održivog razvoja,
 Uprava za procjenu utjecaja na okoliš i
 održivom gospodarenje otpadom, HR-10000
 Zagreb, Radnička cesta 80
3. U spis, ovdje.
AKT OPĆINSKOG NAČELNIKA OPĆINE KARLOBAG

O D L U K U
o izmjeni i dopuni Odluke o osnivanju i imenovanju članova Socijalnog vijeća

Članak 1.
Članak 4. Odluke o osnivanju i imenovanju članova Socijalnog vijeća, KLASA: 550-01/14-01/01, URBROJ: 2125/05-14-01 od 02. siječnja 2014. mijenja se i glasi:

Članovi Socijalnog vijeća su:

1. Mirjana Blašković, predsjednica
2. Nada Devičić, član
3. Tomislava Jurković, član
4. Drago Potočnjak, član
5. Ivanka Šegota Brujić, član

Članak 2.
Ova Odluka stupa na snagu danom donošenja, a objavit će se u „Županijskom glasniku“ Ličko-senjske županije.

KLASA: 550-01/14-01/01
URBROJ: 2125/05-17/02
Karlobag, 10. travnja 2017. godine
Općinski načelnik
Ivan Tomljenović, v.r.

AKT ODBORA ZA STATUT, POSLOVNIK I PROPISE

Pročišćeni tekst obuhvaća: Odluku o donošenju Prostornog plana Ličko-senjske županije, („Županijski glasnik“ broj 16/02), Ispravak Odluke o donošenju Prostornog plana Ličko-senjske županije, („Županijski glasnik“ broj 17/02), Ispravak Odluke o donošenju Prostornog plana Ličko-senjske županije („Županijski glasnik“, broj 19/02), Odluku o izmjenama i dopunama Odluke o donošenju Prostornog plana Ličko-senjske županije, („Županijski glasnik“ broj 24/02), Usklađenje Prostornog plana Ličko-senjske županije s Uredbom o uređenju i zaštiti zaštićenog obalnog područja mora
O D L U K A
O DONOŠENJU PROSTORNOG PLANA LIČKO-SENJSKE ŽUPANIJE
(pročišćeni tekst)

I. OPĆE ODREDBE

Članak 1.
Donosi se Prostorni plan Ličko-senjske županije, u daljnjem tekstu Plan. Obuhvata Plan u tvrđen je Zakonom o područjima županija, gradova i općina u Republici Hrvatskoj („NN“ br. 10/97; 124/97; 50/98-Odluka USRH, 68/98; 22/99; 42/99-Odluka USRH, 117/99, 128/99, 44/00, 129/00 i 92/01), površine 5.350,50 km² i s 225 naselja.

Ispravkom Odluke o donošenju Prostornog plana Ličko-senjske županije („Županijski glasnik“ broj 17/02) – objavljen 10. srpnja 2002. godine u uvodnom dijelu tekst „članaka 12 i 73. Poslovnik Županijske skupštine („Županijski glasnik“ br. 20/01) ispravljen je u tekstu „članaka 12 i 75. Statuta Ličko-senjske županije („Županijski glasnik“ br. 16/01) i članaka 73. Poslovnik Županijske skupštine („Županijski glasnik“ br. 20/01)".

Članak 2.
Plan iz članka 1. sastavni je dio ove Odluke, a sastoji se od:

I.) OSNOVNOG DJELA PLANA

A TEKSTUALNOG DJELA - ODREDBE ZA PROVOĐENJE

1. UVJETI RAZGRANIČENJA PROSTORA PREMA OBILJEŽJU, KORIŠTENJU I NAMJENI
2. UVJETI ODREĐIVANJA PROSTORA GRAĐEVINA OD VAŽNOSTI ZA DRŽAVU I ŽUPANIJU
3. UVJETI SMJEŠTAJA GOSPODARSKIH SADRŽAJA U PROSTORU
4. UVJETI SMJEŠTAJA DRUŠTVENIH DJELATNOSTI U PROSTORU
5. SMJERNICE I KREATIRAJTE ODREĐIVANJE GRAĐEVINSKIH PODRUČJA I KORIŠTENJA IZGRADENIH I NEIZGRADENIH DIJELA PODRUČJA
6. UVJETI (FUNKCIONALNI, PROSTORNI, EKOLOŠKI) UTVRĐIVANJA PROMETNIH I DRUGIH INFRASTRUKTURNIH SUSTAVA U PROSTORU
7. MJERE OČUVANJA KRAJOBRAZNIH VRIJEDNOSTI
8. MJERE ZAŠTITE PRIRODNIH VRIJEDNOSTI I POSEBNOSTI I KULTURNO-POVIJESNIH CJELINA
9. POSTUPANJE S OTPADOM
10. MJERE SPREČAVANJA NEPOVOJNIH UTJECAJA NA OKOLIŠ
11. MJERE PROVEDBE

B GRAFIČKOG DJELA - KARTOGRAFSKI PRIKAZI u mjerilu 1:100 000

1.a KORIŠTENJE I NAMJENA PROSTORA – prostori za razvoj i uređenje
1.b KORIŠTENJE I NAMJENA PROSTORA – promet i elektroničke komunikacije
2.a INFRASTRUKTURNI SUSTAVI I MREŽE – vodogospodarski sustav
2.b INFRASTRUKTURNI SUSTAVI I MREŽE – energetski sustav
3. UVJETI KORIŠTENJA, UREĐENJA I ZAŠTITE PROSTORA

II.) OBVEZNIH PRILOGA

I OBRAZLOŽENJE

1. POLAZIŠTA

1.1. Položaj, značaj i posebnosti županijskog područja u odnosu na prostor i sustave države
1.2. Osnovni podaci o stanju u prostoru (tabelica 1. i 2.)
1.3. Prostorno razvojne i resursne značajke
1.4. Obveze iz Strategije i Programa prostornog uređenja Republike Hrvatske i ocjena postojećih prostornih planova
1.4.1 Ocjena stanja, mogućnosti i ograničenja razvoja u odnosu na demografske i gospodarske podatke te prostore pokazatelje

Članak 32. Područja za uzgoj riba, rakova i školjaka (marinkulturi) moraju imati zadovoljavajuće biofizičke karakteristike (izloženost otvorenom moru, dubina, vjetar, valovi, pridržna topografija, struktura sedimenta, mutnoča, kakvoća mora, itd.), znanstvenom provjerom utvrđen mogući kapacitet i veličinu zahva, hvata, te potrebnu infrastrukturu (pristupni putovi, komunikacije, električna energija, proizvodnja hrane za uzgoj, itd.). Dijeljnost markikuture može se odrediti na svim područjima pogodnim s gledišta uvjeta za tu djelatnost, izuzev područja:

- na kojima prevladava nepovoljna hidrodimamika, nezadovoljavajući higijenski uvjeti i eutrofa područja s rizicima ovatine toksičnih fitoplanktna,
- na kojima je izraženo onečišćenje zbog blizine urbanih centara, lučkih i industrijskih djelatnosti,
- na kojima je intenzivan promorski promet,
- koja su od veće gospodarske važnosti i intenzivne rekreativne aktivnosti,
- posebne namjene (npr. vojna područja),
- na osjetljivim dijelovima posebno zaštićenih područja,
- zaštićenog obalnog područja mora u širini od 300m od obalne crte, za uzgoj plave ribe.

Članak 33. Generalno određivanje lokacija za markikuturu provodi se putem PPŽ u skladu s vrednovanjem obalnog područja i mora u odnosu na kompatibilnost takve namjene i drugih namjena kao što su turizam, rekreacija, osobito kupališta, čuvanje prirodnih uvala i pomorskih djelatnosti temeljem studije vrednovanja mora i podmorja županije koja čini sastavni dio dokumentacije PPŽ-a.

Članak 34. Detaljnije lokacije za djelatnost markikuture određuju se PPUO/G temeljem raspoloživih podataka o namjeni prostora kopna, te datih smjernica u okviru studije vrednovanja mora i podmorja županije, pri čemu se Prostornim planom uredjenja utvrđuje tip markikutulnih djelatnosti ovisno o ponuđenim mogućnostima iz navedene studije, uvažavajući zakonom propisane uvjete i smjernice ovog Plana koje obuhvaćaju:

- Minimalna udaljenost do zona izgradnje na kopnu iznosi 1000 m,
- Minimalna dubina mora 30 m (za određene vrste uzgoja 50 m),
- Mogućnost neposrednog obalnog uzgoja (obične bobice), kroz manju proizvodnju do 50 t u okviru obiteljske farme, samo na ograničenom broju lokacija izvan ili na vanjskom rubu uvala,
- Uzgoj plave ribe (tuna i sl.) sukladno zakonskim niskim propisima o ZOP-u pri čemu se valorizacija pojedine lokacije za predmetnu namjenu provodi u okviru PPUO/G temeljem daljnjih istraživanja.

Članak 35. Osnovne poljoprivredne, stočarske i ribarske djelatnosti po područjima (mikroregijama) su:

- krška polja (Gacko, Ličko, Krabavsko, Stajničko, Lapačko, Koreničko, Košinjsko, Briniško, Hrvatsko, Novaljsko i dr.); sjemenski i konzumniji kumpir, voćarstvo, povrtarstvo, pojedine vrste žitarica, industrijske kulture, ovčarstvo, kozarstvo, govedarstvo, konjukarstvo, peradarsko, svinjogossto, pčelarstvo i uzgoj rječne ribe,
- primorski dio Velebita: sakupljanje i uzgoj lijekovitog i začinskog bilja, kozarstvo, ovčarstvo, pčelarstvo, uzgoj divljači, ribarstvo,
- Otok Pag – područje Grada Novalje: maslinarstvo, vinogradarstvo, uzgoj i sakupljanje lijekovitog i začinskog bilja, pčelarstvo, ovčarstvo, kozarstvo, markikutura, kočarski izlov ribe (škampi, sipe, lignje), izlov plave ribe (posebno srdele i inčuni),
- brdski dio Velebita: uzgoj i sakupljanje lijekovitog i začinskog bilja, gljivarstvo, pčelarstvo, uzgoj divljači, ovčarstvo, kozarstvo, govedarstvo i konjukarstvo,
- Ličko sredogorje: kontinentalno voćarstvo, krmno bilje, uzgoj i sakupljanje lijekovitog i začinskog bilja, pojedine vrste žitarica, gljivarstvo, pčelarstvo, uzgoj divljači, ovčarstvo, kozarstvo, govedarstvo i konjukarstvo,
- Mala Kapela: uzgoj i sakupljanje lijekovitog bilja i začinskog bilja, gljivarstvo, pčelarstvo, uzgoj divljači, ovčarstvo, kozarstvo, govedarstvo i konjukarstvo,
- Lička Plješivica: kontinentalno voćarstvo, krmno bilje, uzgoj i sakupljanje lijekovitog i začinskog bilja, pojedine vrste žitarica, gljivarstvo, pčelarstvo, uzgoj divljači, ovčarstvo, kozarstvo, govedarstvo i konjukarstvo,
- područje Grada Otočca i Grada Gospića: korištenje voda za uzgoj riba i raka (lokacije su određene načelno).

Unutar građevinskog područja naselja smješten izvan ZOP-a može se u sklopu građevne čestice planirati izgradnja građevina za uzgoj životinja kao dio djelatnosti obiteljskog govedarstva, a njihov kapacitet i uvjeti izgradnje reguliraju se Odredbama PPUO/G odnosno posebnim odlukama općina i gradova.
LIČKO - SENJSKA ŽUPANIJA
OPĆINA KARLOBAG

PROSTORNI PLAN UREĐENJA
OPĆINE KARLOBAG

1. KORIŠTENJE I NAMJENA PROSTORA/POVRŠINA

<table>
<thead>
<tr>
<th>Mjerilo: 1:25000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>1000m</td>
</tr>
</tbody>
</table>

Program mjere za uređenje stanja u prostoru: Županijski gosposki Likto-senjske Županije br. 2504

Odluka predložena: (Datum)
U posljednjoj rujno 2006.

Rješenje: (Datum)
15.07.2007.

Objava: (Datum)
ODGOVORNO SELIDBOVLA ZA PROSTORNE UREĐENJE
RASPLAĆENJE
NAČIN I RASPOSTRENO

Propisna osoba koja je izradila plan:

ekoplan d.o.o.

 overdana okoliša, prostorno planiranje i projektiranje, Kostrena, Glavani 24

Prethodno osoba koja je izradila plan:

ekoplan d.o.o.

odgovorna osoba

Sanka Vrdoljak, dipl.ing.arh.

Sanka Vrdoljak, dipl.ing.arh.

Sanka Vrdoljak, dipl.ing.arh.

Sansa Vrdoljak, dipl.ing.arh.

Dario Rukavina, dipling.arh.

Ana Rukavina-Stipuljac, dipl.ing.arh.

Edmunt Kule, dipl.ing.arh.

Karlo Pivadic, dipl.ing.arh.

Sasa Jukarina, dipl.ing.arh.

Neida Dukić-Koreski, ovaj u. eng., etn.

Toni Paračić, dipl.ing.arh.

Mate Rukavina, dipl.ing.arh.

Miroslav Usljek, ing arh.

lača Tomić, ing arh.

Pravopisna osoba koja je izradila plan:

Sanka Vrdoljak, dipl.ing.arh.

Sanka Vrdoljak, dipl.ing.arh.
LIČKO-SENJSKA ŽUPANIJA
PROSTORNI PLAN UREĐENJA OPĆINE KARLOBAG

1. KORIŠTENJE I NAMJENA PROSTORA/POVRŠINA

PROSTOR/POVRŠINA ZA RAZVOJ I UREĐENJE INFRASTRUKTURNIH SUSTAVA I MREŽA

CESTOVNI PROMET

- DRŽAVNA CESTA
- LOKALNA CESTA
- NERAZVRSTANA CESTA (Šumska i ostale)
- DRŽAVNA CESTA - OBLAZNICA NASELJA KARLOBAG
 - VARIJANTA 1 - ISTRAŽIĆA TRASA
 - VARIJANTA 3 - TRASU POTRESNO ISTRAŽITI
 - VARIJANTA 5 - TRASU POTRESNO ISTRAŽITI
- DRŽAVNA CESTA (TRASA U ISTRAŽIVANJU)
- TUNEL (TRASA U ISTRAŽIVANJU)
- BICIKLISTIČKA STAZA

POMORSKI PROMET

- MORSKA LUKA ZA JAVNI PROMET
- ŽUPANJSKOG ZNAČAJA
- MORSKA LUKA ZA JAVNI PROMET
- LOKALNOG ZNAČAJA
- MORSKA LUKA POSEBNE NAMJENE
 - KBD MATEO - LL, NAUTIČKI TURIZAM - LN, ŠPORT - LS,
 NAVIJOLO TKRZAN - SURF MARINA - LNI
- LUČKO PODRUČJE

ELEKTROENERGETIKA

- DALEKOVOD 110 kV
- INFRASTRUKTURNI SUSTAV - TS 110 kV

EKO PLAN
zaštitu okoliša, planiranje i projektno rješenje d.o.o.
RIJEKA

[Signature]
ŽUPANIJSKI GLASNIK
LIČKO–SENJSKE ŽUPANIJE

ISSN 1330 – 5247

SADRŽAJ:

AKTI OPĆINSKOG VIJEĆA OPĆINE KARLOBAG

1. Odluka o razrješenju dužnosti člana Općinskog poglavarstva Općine Karlobag .. 84
2. Odluka o izboru člana Općinskog poglavarstva Općine Karlobag ... 84
3. Odluka o donošenju Prostornog plana uređenja Općine Karlobag ... 84
Na temelju članka 35. Zakona o lokalnoj i područnoj (regionalnoj) samoupravi ("Narodne novine", br. 33/01, 60/01 - vjerodostojno tumačenje i 129/05), članka 26. Statuta Općine Karlobag, ("Županijski glasnik" Ličko-senjske županije, br. 1/06), Općinsko vijeće Općine Karlobag na svojoj sjednici održanoj dana 28.01.2008. godine, donosi

ODLUKU
o razrješenju dužnosti člana
Općinskog poglavarstva Općine Karlobag

Članak 1.

Marko Vukelić, na vlastiti zahtjev, razrješuje se dužnosti člana Općinskog poglavarstva Općine Karlobag.

Članak 2.

Ova Odluka stupa na snagu danom donošenja, a objavit će se u „Županijskom glasniku“ Ličko-senjske županije

KLASA: 013-03/08-01/01
UR.BROJ: 2125/05-08-04

OPĆINSKO VJEĆE OPĆINE KARLOBAG

Predsjednica Vijeća
Natalija Tomljenović, v.r.

Na temelju članka 35. i 46. Zakona o lokalnoj i područnoj (regionalnoj) samoupravi ("Narodne novine", br. 33/01, 60/01 - vjerodostojno tumačenje i 129/05), članka 26. i 44. Statuta Općine Karlobag, ("Županijski glasnik" Ličko-senjske županije, br. 1/06), Općinsko vijeće Općine Karlobag na svojoj sjednici održanoj dana 28.01.2008. godine, donosi

ODLUKU
o izboru člana Općinskog poglavarstva
Općine Karlobag

Članak 1.

U Općinsko poglavarstvo Općine Karlobag ime
nuje se:
Jelena Morović dipl oec - član Poglavarstva zadužen za resor proračun, financije i gospodarstvo.

Članak 2.

Ova Odluka stupa na snagu danom donošenja, a objavit će se u „Županijskom glasniku“ Ličko-senjske županije

KLASA: 013-03/08-01/01
UR.BROJ: 2125/05-08-05

OPĆINSKO VJEĆE OPĆINE KARLOBAG

Predsjednica Vijeća
Natalija Tomljenović, v.r.

ODLUKU
o donošenju
PROSTORNOG PLANA UREĐENJA
OPĆINE KARLOBAG

OPĆE ODREDBE

Članak 1.

Donosi se Prostorni plan uređenja općine Karlobag (u daljnjem tekstu: Plan).

Članak 2.

Prostorni plan uređenja Općine Karlobag (dalje u tekstu: Plan) dugoročni je i koordinirajući planski dokument, koji utvrđuje konceptiju i organizaciju prostora kao i uvjete uređenja područja općine Karlobag. Planom se određuje svrhnitvo korištenje, namjena, oblikovanje, obnova i sanacija građevinskog i drugog zemljišta, te posebno zaštitu vrijednih dijelova prirode, zaštitu kulturne baštine i i krajolika.

Granice obuhvatite Prostornog plana su granice područja Općine Karlobag određene Zakonom o područjima županija, gradova i općina u Republici Hrvatskoj ("Narodne novine" broj 86/06, 125/06 i 16/07).

Članak 3.
1.6.1. Zone pomorskog prometa

Članak 21.

Na području općine Karlobag nalazi se pet morskih luka otvorenih za javni promet, koje su razvrstane prema značaju u županijske i lokalne (Naredba o razvrstavanju luka otvorenih za javni promet na području Ličko-senjske županije, NN 5/97):

- Luka županijskog značaja:
 - luka Karlobag
- Luke lokalnog značaja:
 - luka Karlobag – teretna luka
 - luka Porat
 - luka Cesarica
 - luka Barići Draga

Za sve ove javne luke određeno je lučko područje na moru (i na kopnu) koje je namijenjeno prometu plovila prema posebnim važećim propisima koji reguliraju problematiku pomorskog prometa.

Članak 22.

Na području općine Karlobag planira se smještaj dvije luke posebne namjene – luke za nautički turizam:

- Karlobag - maksimalni broj vezova: 200 u moru
- Lukovo Šugarje – uvala Porat - maksimalni broj vezova: 200 u moru i 100 vezova na kopnu (suha marina)

Veličina i oblik luke, kao i prateći sadržaji na kopnu odredit će se na osnovi idejnih rješenja, procjene utjecaja na okoliš (maritimni uvjeti, strujanja mora i sl.) i UPU-a koji se mora izraditi za područja u kojima su planirane ove luke. Uz luku se može planirati i smještaj benzinske postaje za opskrbu plovila gorivom. Također će se odrediti i pripadajuće lučko područje na kopnu i na moru, prema posebnim važećim propisima.

Članak 23.

Na području Općine Karlobag mogu se urediti (izgraditi) privezišta i to kao:

- privezišta u funkciji stalnih vezova za domicilno stanovništvo tzv. komunalna privezišta ili komunalne luke u okviru kojeg će se osigurati akvatorij i urediti pripadajuća površina na kopnu za prihvat vozila na tranzitu.
- privezišta u funkciji turističkih i izletničkih brodica uz građevinsko područje naselja ili izdvojenih ugostiteljsko-turističkih zona izvan naselja

Planom nisu određene lokacije privezišta, a veličina (kapacitet) pojedinih privezišta odredit će se detaljnijom prostorno planskom dokumentacijom u skladu s važećim zakonima i propisima.

1.6.2. Sport i rekreacija u moru

Članak 24.

Zona sporta i rekreacije u moru proteže se u pojasu od 300 m uz morsku obalu s izdvojenom zonom od 100 m uz obalu. Širina morskog pojasa marinske rekreacije određuje se temeljem posebnog odgovarajućeg propisa i postupka. Shodno tome u pojasu od 100 m uz obalu isključuje se mogućnost prometa određenih kategorija plovila.

Morske zone marinske rekreacije namijenjene su uređenju plaže, prema važećim propisima o vrtama morskih plaža i uvjetima koje moraju zadovoljavati.

1.6.3. Zone ribarenja

Članak 25.

Planom se omogućuje ribarenje u akvatoriju općine, osim u područjima onih zaštićenih dijelova gdje je takva djelatnost zabranjena, područjima luka, plovnim putovima te na ostalim područjima na kojima bi djelatnost ribarenja bila u suprotnosti s ostalim namjenama.

1.6.4. Zone i lokaliteti za uzgoj riba i školjaka - marikultura

Članak 26.

Planom su određene lokacije za uzgajališta ribe na temelju STUDIJE VREDNOVANJA MORA I PODMORJA LIČKO-SENJSKE ŽUPANIJE, koja je dala generalnu ocjenu pogodnosti pojedinih dijelova obale za prihvat djelatnosti uzgoja u moru – marikulture:

- Područje izvan Uvale Porat (Lukovo Šugarje) (1)
- Uvala Koromačina (1)
- Uvala Smojveruša (1)
- Uvale Marasovića i uvale Pečci (2)
- Uvale Kralić do uvale Drvarica (3)
- Uvala Badnjina (1)

Navedene lokacije analizirane su i sa aspekta moguće inkopatibilnosti sa namijenom i korištenjem kopna, te je ukupni broj lokacija reducirani na one koje zadovoljavaju slijedeće uvjete:

- minimalna udaljenost do zona izgradnje na kopnu iznosi 1000 m
- minimalna dubina mora 30 m (za određene vrste uzgoja 50 m)
- mogućnost neposrednog obalnog uzgoja (obiteljske farme), kroz manju proizvodnju do 50t u okviru obiteljske farme, samo na ograničenom broju lokacija izvan ili na vanjskom rubu uvala
- uzgoj plave ribe (tuna i sl.) sukladno zakonskim propisima o ZOP-u pri čemu se valorizacija pojedine lokacije za predmetnu namjenu provodi temeljem daljnjih istraživanja.

U zaštićenom obalnom području mora nije dopušteno postavljanje instalacija za uzgoj tuna i plave ribe.

Postojeći i planirani sadržaji marikuté prikazani su u grafičkom dijelu Plana, kartografski prikaz broj 1. KORIŠTENJE I NAMJENA POVRŠINA u mjerilu 1:25000 i broj 4. GRAĐEVINSKA PODRUČJA u mjerilu 1:5000.

1.8. POVRŠINE INFRASTRUKTURNIH SUSTAVA

Članak 27.

Površine za infrastrukturu razgraničuju se na:
- prometni sustav (ceste, morske luke, pošta i javne telekomunikacije)
- energetski sustav
- vodno gospodarski sustav

Površine/koridori infrastrukturnih sustava namijenjeni su gradnji isključivo građevina infrastrukture i pratećih građevina. Unutar ovih površina/koridora ne mogu se graditi građevine stambene namjene.

Osim na površinama/koridorima koji su u grafičkom dijelu Plana određene za infrastrukturne sustave, građevine infrastrukture mogu se graditi i unutar površina koje su određene za druge namjene.

Mreže infrastrukturnih sustava prikazane su na kartografskom prikazu br. 2. INFRASTRUKTURNI SUSTAVI I MREŽE.

2. UVJETI UREĐENJA PROSTORA

Članak 28.

Uređivanje prostora na području općine Karlobag, bilo izgradnjom građevina ili uređenjem zemljišta, te obavljanje drugih radova na površini, odnosno izgradnja ili ispod površine zemlje, kojim se mijenja stanje u prostoru, mora se obavljati u skladu s odredbama ovog Plana i odredbama prostornih planova užeg područja koji se izrađuju temeljem odredbi ovog Plana (UPU, DPU).

Područje Općine Karlobag prema osnovnim uvjetima gradnje/uređenja prostora dijeli se na:
- građevinska područja i to:
 ▪ građevinska područja naselja
 ▪ građevinska područja zona izdvojenih namje-ri
- preostali dio područja Općine.

Građevinsko područje naselja utvrđeno prostornim planom uređenja općine je izgrađeni i uređeni dio naselja i neizgrađeni dio područja tog naselja planiran za njegov razvoj i proširenje.

Izdvjeno građevinsko područje izvan naselja utvrđeno prostornim planom uređenja općine je izgrađena i/ili neizgrađena prostorna cjelina izvan građevinskog područja naselja isključivo za gospodarsku namjenu bez stanovanja (proizvodnja, ugostiteljstvo i turizam, sport) i groblja.

Neizgrađeni dio građevinskog područja može se do privođenja namjene koristiti i kao poljoprivredno zemljište ili za sadržaje privremenog ili povremenog karaktera (temeljem posebnih odluka lokalne samouprave): montažni kiosci, sajmovi, razne prigodne manifestacije i sl.

Granice građevinskih područja određene su na katastarskoj podlozi u grafičkom dijelu Plana.

Preostali dio područja općine, na kojem nisu utvrđena građevinska područja, čini poljoprivredno tlo i šume isključivo osnovne namjene, kao i ostalo poljoprivredno tlo, šume i šumsko zemljište, zatim površine (more i vodotoći), površine posebne namjene, površine infrastrukturnih sustava i groblja.

- Izvan građevinskog područja uređivanje prostora provodi se na temelju smjernica i kriterija ovog Plana. Izvan građevinskog područja, a na osnovi Zakona o prostornom uređenju, može se planirati izgradnja objekata infrastrukture (prometne, energetске, komunalne itd.), zdravstvenih i rekreacijskih objekata, objekata obrane, te stambenih i gospodarskih objekata za vlastite potrebe i potrebe seoskog turizma, a svi u funkciji obavljanja poljoprivredne djelatnosti.

Članak 29.

Prema posebnim uvjetima korištenja, uređenja i zaštite prostor Općine se dijele na:

Područja posebnih uvjeta korištenja - prostori posebnih vrijednosti prirodne i kulturne baštine izvan građevinskog područja naselja, u kojima je zabranjena svaka nova gradnja:
- I. i II. zaštitna zona izvorišna vode za piće
- zaštićeni dijelovi prirode: strogi rezervati prirode, zaštićeni krajolici i spomenici prirode;

Iznimno, zabranu se ne odnosi na infrastrukturu, ali uz izvođenje posebnih mjera zaštite.
REPUBLIKA HRVATSKA
Ličko-senjska županija
Upravni odjel za graditeljstvo, zaštitu okoliša i prirode te
komunalno gospodarstvo
Senj

KLASA: 350-01/20-10/00003
URBROJ: 2125/1-06-4-20-0002
Senj, 08.09.2020.

> IRB - Institut Ruđer Bošković
HR-10000 Zagreb, Bijenička cesta 54

Predmet: Mišljenje
- daje se

Povodom Vašeg zahtjeva zaprimljenog dana 07. rujna 2020. godine, vezano za uzgajališta kalifornijske pasrte na lokacijama ispred uvala Trsina i Tvrduša (V1) i ispred Bilančevica i Bočarije Vele (V2), u priviku dopisa dostavljamo ovjerene izvodi iz prostorno - planske dokumentacije i to:

- kartografski prikaz 1. - II Korištenje i namjena površina Prostornog plana uređenja Grada Senja ("Službeni glasnik" Grada Senja, broj 11/06, 1/12, 6/14, 10/14 i 15/18).

Na predmetnim kartografskim prikazima predmetne lokacije su previđene kao površine za županiju (čest.)

U očitovanjima ovoga tijela, KLASA: 350-01/20-10/02, URBROJ: 2125/1-06-4-20-02,04 od 02.06. i 08.06.2020. godine dostavljeni su podaci koji su propisani i previđeni važećim provedbenim prostornim planom Grada Senja.

VODITELJ
Denis Opala, dipl.ing.grad.

DOSTAVITI:
- ispis elektroničke isprave u spis predmeta
- elektroničku ispravu putem elektroničkog sustava (https://dozvola.mgipu.hr), te ovjerena
 ispis elektroničke isprave putem pošte

IRB - Institut Ruđer Bošković
HR-10000 Zagreb, Bijenička cesta 54
Županija: LICKO-SENJSKA ŽUPANJIA
Grad: GRAD SENJ
Naziv prostornog plana: IZMJENE I DOPUNE PROSTORNOG PLANADA UREĐENJA GRADA SENJA
Broj radnog naloga: 10022
Dokumentacijski broj: 1333
Naziv kartografskog prikaza: KORIŠTENJE I NAMJENA POVRŠINA
Broj kartografskog prikaza: 11
Mjerilo kartografskog prikaza: 1:25000
Odluka o izradi izmjena i dopuna Prostornog plana uređenja Grada Senja. Službeni glasnik Grada Senja br. 15/07

Odluka o donošenju izmjena i dopuna Prostornog plana uređenja Grada Senja. Službeni glasnik Grada Senja br. 1/12

Pećat tijela odgovornog za provođenje javne rasprave:

Stuđesno blago koje je ispravio plan:

Pravni osobe koje je izradio plan:

Pećat pravne osoblje koje je izradio plan:

Odgovorna osoba za provođenje javne rasprave:
Andrija Tomić, dipl.ing.

Odgovorni voditelj izrade plana:
Tatjana Mirko, dipl.ing. arh.

Stručni tim u izradi plana:

Pećat predstavničkog tijela:

Izvršnica ovog prostornog plana s izvršnom ovlastima:

Pećat nadležnog tijela:
IZMJENE I DOPUNE
PROSTORNOG PLANA UREĐENJA GRAĐA SENJA

1. KORIŠTENJE I NAMJENA POVRŠINA

TERITORIJALNE I STATISTIČKE GRANICE

ŽUPANIJSKA GRANICA

OPĆINSKA I GRADSKA GRANICA

GRANICA NASELJA

ZAŠTIĆENI OBALNI POJAS 1000 m od obale (kornjača lijevi)

ZAŠTIĆENI OBALNI POJAS 300m od obale (morska lijeva)

prostori i površine za razvoj i uređenje naselja
GRAĐEVINSKO PODRUČJE NASELJA

IZGRAĐENI DIO GRAĐEVINSKOG PODRUČJA NASELJA

NEIZGRAĐENI DIO GRAĐEVINSKOG PODRUČJA NASELJA

POVRŠINE IZVAN NASELJA
Izgrađeno/nezgrađeno

GOSPODARSKA NAMJENA - PROIZVODNA
prebivalište industrijsko - 11, prebivalište zarašćansko i2

POSOLOVNA NAMJENA
komunalno servisno - k3

UGOSTITELJSKO TURISTIČKA NAMJENA
hتل - 11, turističko naselje - t2, kamp - t3, akvamarin - t4, etno-eko selo t5

ŠPORTSKO-REkreaciJSKA NAMJENA
najavljeni centar - sr, natjecalište - sr centar za ženske sportove - r3
centar za voljele škole i centar za voljele škole i centar za voljele škole - r7

POVRŠINA ZA OGRANIČENO ISKORIŠTAVANJE MINERALNIH SIROVINA
tehničko-gradbeni kamen - e1

POVRŠINE UZGAJALIŠTA (AKVAKULTURA)

POSEBINA NAMJENA

POVRŠINE INFRASTRUKTURNIH SUSTAVA
linijske i pravilne infrastrukturne građevine, državnog i županijskog značaja
i31 - interurban, i52 - ekološki i energetski postrojenje, i53 - vjetropark

VRIJEDNO OBRADIVO TLO
OSTALA OBRADIVA TLA
ŠUMA GOSPODARSKE NAMJENE
REPUBLICA HRVATSKA
LIČKO SENJSKA ŽUPANIJA
PROSTORNI PLAN
VII. IZMJENE I DOPUNE (2017.)

KARTOGRAFSKI PRIKAZ
1.a. KORIŠTENJE I NAMJENA PROSTORA

TUMAČ PLANSKOG ZNAKOVLJA
DRŽAVNA GRANICA
ŽUPANIJSKA GRANICA
OPĆINSKA / GRADSKA GRANICA
GRANICA ZAŠTIĆENOG OBALNOG PODRUČJA

PROSTORI / POVRŠINE ZA RAZVOJ I UREĐENJE
postojeće planirano NASELJA

NASELJA POVRŠINE VEĆE OD 25 ha
NASELJA POVRŠINE MANJE OD 25 ha

POVRŠINE IZVAN NASELJA
MARIKULTURA
GOSPODARSKA NAMJENA (PROIZVODNA)
POVRŠINE ZA ISKORIŠTAJANJE MINERALNIH SIROVINA (EKSPLOATACIJSKO POLJE)
E3 - ostalo
POSLOVNA NAMJENA
UCOSTITELJSKO-TURISTIČKA NAMJENA
POLJOPRIVREDNO TLO ISKLJUČIVO OSNOVNE NAMJENE

OSOBITO VRJEDNO OBRADIVO TLO

VRJEDNO OBRADIVO TLO

OSTALA OBRADIVA TLA

ŠUMA ISKLJUČIVO OSNOVNE NAMJENE

GOSPODARSKA

ZAŠTITNA

ŠUMA POSEBNE NAMJENE

OSTALO POLJOPRIVREDNO TLO, ŠUME I ŠUMSKO ZEMLJIŠTE

VODNE POVRŠINE

POSEBNA NAMJENA

CESTOVNI PROMET

AUTOCESTA

MOGUĆI LI ALTERNATIVNI KORIDOR (TRASA) CESTE

BRZA CESTA

OSTALE DRŽAVNE CESTE

ŽUPANIJSKA CESTA

LOKALNA CESTA

POTENCIJALNI KORIDOR CESTE

RASKRIŽJE CESTE U DVJE RAZINE

TUNEL

MEĐUNARODNI GRANIČNI CESTOVNI PRIJELAZ

GRANIČNI CESTOVNI PRIJELAZI ZA POGRAĐANI PROMET

POMORSKI PROMET

MORSKA LUKA ZA JAVNI PROMET (ŽUPANIJSKI ZNAČAJ)

MORSKA LUKA ZA JAVNI PROMET (LOKALNI ZNAČAJ)

MORSKA LUKA POSEBNE NAMJENE

DRŽAVNI ZNAČAJ

ŽUPANIJSKI ZNAČAJ

(LR - ribarstvo, LN - nautički turizam, LJ - industrija, LS - šport)

GRANIČNI POMORSKI PRIJELAZ

PLOVNI PUT (UNUTARNJI)
POMORSKI PROMET
MORSKA LUKA ZA JAVNI PROMET
(ŽUPANIJSKI ZNAČAJ)
MORSKA LUKA ZA JAVNI PROMET
(LOKALNI ZNAČAJ)
MORSKA LUKA POSEBNE NAMJENE
DRŽAVNI ZNAČAJ
ŽUPANIJSKI ZNAČAJ
(LR - ribarstvo, LN - nautički turizam, LI - industrija,
LS - šport)
GRANIČNI POMORSKI PRIJELAZ
PLOVNI PUT (UNUTARNJI)

ŽELJEZNIČKI PROMET
BRZA TRANSEUROPSKA ŽELJEZNIČKA PRUGA
(KORIDOR/TRASA)
ALTERNATIVNI KORIDOR BRZE PRUGE
POSTOJEĆA PRUGA S DOGRADNJOM DRUGOG
KOLOSJEKA I PREINAKA ZA BRZINE DO
TUMAČ:

GRANICE

- GRANICA OBUVATA PROSTORNOG PLANA UREĐENJA GRADA NOVALJA
- GRANICA NASELJA
- LINIJA OBALE, ZAŠTIĆENI OBALNI POJAS (1000m, 300m)
- GRAĐEVINSKO PODRUČJE - IZGRAĐENI / NEIZGRAĐENI DIO

UVJETI KORIŠTENJA

PODRUČJA POSEBNIH UVJETA KORIŠTENJA

ZAŠTIĆENI DIJELOVI PRIRODE

- POSEBNI REZERVAT (postojeći)
 BOTANIČKI - B, ORNITOLOŠKI - O
- ZNAČAJNI KRAJOBRAZ

PREDLOŽENI ZA ZAŠTITU

- ZNAČAJNI KRAJOBRAZ (predložen za zaštitu)
- GRADSKI PEROVOJ - Z1-1 (planirani)
- MEDITERANSKI VRT - Z1-2 (planirani)

EKOLošKo MREŽA NATURA 2000

- PODRUČJA OČUVANJA ZNAČAJNA ZA VRSTE I STANIŠNE TIPOVE
- PODRUČJA OČUVANJA ZNAČAJNA ZA PTICE

ARHEOLošKA BAŠTINA
ARHEOLOŠKO PODRUČJE

ARHEOLOŠKI POJEDINACNI LOKALITET
- KOPNENI

ARHEOLOŠKI POJEDINACNI LOKALITET
- PODMORSKI

POVIJESNA GRADITELJSKA CJELINA

GRADSKA NASELJA

SEOSKA NASELJA

POVIJESNI SKLOP I GRAĐEVINA

CIVILNA GRAĐEVINA

SAKRALNA GRAĐEVINA

TRASA ANTIČKOG AKVADUKTA

MEMORIJALNA BAŠTINA

MEMORIJALNO I POVIJESNO PODRUČJE

ETNOLOŠKA BAŠTINA

ETNOLOŠKO PODRUČJE

PODRUČJA POSEBNIH OGRANIČENJA U KORIŠTENJU

ZONA ŽAŠTITE KRAJOLIKA KULTURNO POVIJESNE CJELINE
POVIJESNA GRADITELJSKA CJELINA
- GRADSKA NASELJA
- SEOSKA NASELJA

POVIJESNI SKLOP I GRAĐEVINA
- CIVILNA GRAĐEVINA
- SAKRALNA GRAĐEVINA
- TRASA ANTIĆKOG AKVADUKTA

MEMORIJALNA BAŠTINA
- MEMORIJALNO I POVIJESNO PODRUČJE

ETNOLOŠKA BAŠTINA
- ETNOLOŠKO PODRUČJE

PODRUČJA POSEBNIH OGRANIČENJA U KORIŠTENJU
- ZONA ZAŠTITE KRAJOLIKA KULTURNO POVIJESNE CJELINE
- ZAŠTITA EKSPozICIJE ILI KONTAKTNA ZONA

VODE I MORE
- VODOTOK - BUJICA
Popis fitoplanktonskih skupina pronađenih u uzorcima vode (označeno s *) i mrežnim uzorcima u studenom 2008. godine u Velebitskom i Paškom kanalu. Diatomeje koje su uobičajene u zajednici bentosa označene su sa slovom b. MAX označava maksimalnu abundanciju stanica L⁻¹, a Fr predstavlja učestalost pojavljivanja (45 uzoraka iznosi 100%).

Taxa

BACILLARIOPHYCAE

Achnanthes sp. b

Amphirpora sulcata O'Meara b

Amphora sp. b

Asteromphallus flabellatus (Brébisson) Greville

Auricula sp. b

Bacillaria paxillifera (Müller) Hendey *

Bacteriastrum biconicum Pavillard

Bacteriastrum Bacteriastrum furcatum Shadbolt

Bacteriastrum hyalinum Lauder

Bacteriastrum mediterraneum Pavillard *

*Bacteriastrum sp. * 9 500 46.7

Ceratoneis closterium Ehrenberg * b 1 140 6.7

Cerataulina pelagica (Cleve) Hendey *

Chaetoceros affinis Lauder *

Chaetoceros anastomosans Grunow *

Chaetoceros borealis Lauder

Chaetoceros brevis Schütt

Chaetoceros coarctatus Lauder

Chaetoceros compressus Lauder *

Chaetoceros curvisetus Cleve *

Chaetoceros danicus Cleve *

Chaetoceros decipiens Cleve *

Chaetoceros didymus Ehrenberg *

Chaetoceros diversus Cleve *

Chaetoceros laciniosus Schütt *

Chaetoceros lauderi Ralfs *

Chaetoceros lorenzianus Grunow

<table>
<thead>
<tr>
<th>Taxa</th>
<th>MAX</th>
<th>Fr (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achnanthes sp. b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphirpora sulcata O'Meara b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphora sp. b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asteromphallus flabellatus (Brébisson) Greville</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auricula sp. b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillaria paxillifera (Müller) Hendey *</td>
<td>40</td>
<td>2.2</td>
</tr>
<tr>
<td>Bacteriastrum biconicum Pavillard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum Bacteriastrum furcatum Shadbolt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum hyalinum Lauder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteriastrum mediterraneum Pavillard *</td>
<td>9 500</td>
<td>46.7</td>
</tr>
<tr>
<td>*Bacteriastrum sp. *</td>
<td>98 420</td>
<td>95.6</td>
</tr>
<tr>
<td>Ceratoneis closterium Ehrenberg * b</td>
<td>1 140</td>
<td>6.7</td>
</tr>
<tr>
<td>Cerataulina pelagica (Cleve) Hendey *</td>
<td>3 800</td>
<td>51.1</td>
</tr>
<tr>
<td>Chaetoceros affinis Lauder *</td>
<td>3 420</td>
<td>22.2</td>
</tr>
<tr>
<td>Chaetoceros anastomosans Grunow *</td>
<td>7 980</td>
<td>13.3</td>
</tr>
<tr>
<td>Chaetoceros borealis Lauder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetoceros brevis Schütt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetoceros coarctatus Lauder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetoceros compressus Lauder *</td>
<td>18 620</td>
<td>51.1</td>
</tr>
<tr>
<td>Chaetoceros curvisetus Cleve *</td>
<td>279 812</td>
<td>60.0</td>
</tr>
<tr>
<td>Chaetoceros danicus Cleve *</td>
<td>80</td>
<td>2.2</td>
</tr>
<tr>
<td>Chaetoceros decipiens Cleve *</td>
<td>7 220</td>
<td>55.6</td>
</tr>
<tr>
<td>Chaetoceros didymus Ehrenberg *</td>
<td>760</td>
<td>2.2</td>
</tr>
<tr>
<td>Chaetoceros diversus Cleve *</td>
<td>7 980</td>
<td>22.2</td>
</tr>
<tr>
<td>Chaetoceros laciniosus Schütt *</td>
<td>3 040</td>
<td>6.7</td>
</tr>
<tr>
<td>Chaetoceros lauderi Ralfs *</td>
<td>360</td>
<td>6.7</td>
</tr>
<tr>
<td>Chaetoceros lorenzianus Grunow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chaetoceros messanense Castracane
Chaetoceros peruvianus Brightwell * 380 11.1
Chaetoceros rostratus Lauder * 1140 6.7
Chaetoceros simplex Ostenfeld * 1140 11.1
Chaetoceros sp. * 12 540 6.7
Chaetoceros throndsenii Marino, Montresor & Zingone *1 420 6.7
Cocconeis scutellum Ehrenberg * b 760 2.2
Coscinodiscus spp. *b 380 15.6
Cyclotella choctawhatcheana Prasad * 1 520 6.7
Dactyliosolen blavyanus (Peragallo) Hasle
Dactyliosolen fragilissimus (Bergon) Hasle *
Dactyliosolen phuketensis (Sundström) Hasle
Diploneis bombus Ehrenberg b
Diploneis mediterranea (Grunow) Cleve b
Diploneis smithii (Brébisson) Cleve b
Entomoneis sp. b
Eucampia cornuta (Cleve) Grunow * 380 6.7
Fragilaria sp. b
Fragilaripsis kerguelensis (O’Meara) Hustedt
Gomphonema angustatum (Kützing) Rabenhorst b
Guinardia flaccida (Castracane) Peragallo *
Guinardia striata (Stolterfoth) Hasle *
Haslea wawrikae (Hustedt) Simonsen *
Hemiaulus hauckii Grunow ex Van Heurck *
Hemiaulus sinensis Greville *
Leptocylindrus danicus Cleve *
Leptocylindrus mediterraneus (Peragallo) Hasle * 7 980 37.8
Leptocylindrus minimus Gran
Licmosphenia clevei Mereschkowsky b
Lioloma pacificum (Cupp) Hasle
Lyrella lyra (Ehrenberg) Karajeva b
Lyrella spp. b
Mastogloia spp. b
Mastogloia splendida (Gregory) Cleve b
Navicula spp. * b 380 4.4

Neocalyptrella robusta (Norman ex Ralfs) Hernández-Becerril & Meave del Castillo * 380 4.4

Nitzschia amphibia Grunow b
Nitzschia capitellata Hustedt b
Nitzschia fasciculata Grunow b
Nitzschia incerta Grunow * b 380 11.1
Nitzschia obtusa Smith b
Nitzschia sigma (Kützing) Smith b

Nitzschia longissima (Brébisson in Kützing) Ralfs * b 19760 93.3
Nitzschia sp. * b 380 6.7
Plagiodiscus sp. * b

Pleurosigma spp. 760 31.1

Proboscia alata (Brightwell) Sundström * 3040 84.4
Proboscia indica (Peragallo) Hernández-Becerril * 380 15.6
Psammodictyon panduriforme (Gregory) Mann b

Pseudo-nitzschia pseudodelicatissima “sensu lato” * 168253 68.9
Pseudo-nitzschia calliantha Lundholm, Moestrup & Hasle pseudodelicatissima (Hasle) Hasle
Pseudo-nitzschia mannii Amato & Montresor

Pseudosolenia calcaris-avis (Schultze) Sundström * 80 4.4
Raphoneis spp. b

Rhizosolenia castracanei Cleve
Rhizosolenia imbricata Brightwell * 2660 48.9

Striatella unipunctata (Lyngbye) Agardh b
Surirella ovalis Brébisson b
Surirella spp. b

Synedra ulna (Nitzsch) Ehrenberg

Thalassionema nitzschioides (Grunow) Mereschkowsky * 438920 77.8
Thalassiosira rotula Meunier * 1140 2.2
Thalassiosira sp.

Toxarium undulatum Bailey b 17.8

DINOPHYCEAE
<table>
<thead>
<tr>
<th>Species</th>
<th>Abundance</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandrium sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphidoma caudata Halldal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium candelabrum (Ehrenberg) Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium extensum (Gourret) Cleve *</td>
<td>40</td>
<td>2.2</td>
</tr>
<tr>
<td>Ceratium furca (Ehrenberg) Claparède & Lachmann</td>
<td>*190</td>
<td>6.7</td>
</tr>
<tr>
<td>Ceratium fusus (Ehrenberg) Dujardin *</td>
<td>380</td>
<td>15.6</td>
</tr>
<tr>
<td>Ceratium hexacanthum Gourret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium horridum (Cleve) Gran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium massiliense (Gourret) Jørgensen *</td>
<td>380</td>
<td>6.7</td>
</tr>
<tr>
<td>Ceratium pentagonum Gourret *</td>
<td>120</td>
<td>2.2</td>
</tr>
<tr>
<td>Ceratium symmetricum Pavillard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium teres Kofoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratium trichoceros (Ehrenberg) Kofoid *</td>
<td>40</td>
<td>4.4</td>
</tr>
<tr>
<td>Ceratium tripos (Müller) Nitzsch *</td>
<td>40</td>
<td>2.2</td>
</tr>
<tr>
<td>Ceratocorys gourettii Paulsen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corythodinium tesselatum (Stein) Loeblich Jr. & Loeblich III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinophysis acuminata Claparède & Lachmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dinophysis caudata Saville-Kent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diplopsalis „complex“ *</td>
<td>190</td>
<td>2.2</td>
</tr>
<tr>
<td>Gymnodinium cucumis Schütt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnodinium sp. *</td>
<td>1 520</td>
<td>6.7</td>
</tr>
<tr>
<td>Gyrodinium sp. *</td>
<td>760</td>
<td>13.3</td>
</tr>
<tr>
<td>Goniodoma polyedricum (Pouchet) Jorgensen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gonyaulax sp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ornithocercus magnificus Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxytoxum caudatum Schiller *</td>
<td>380</td>
<td>2.2</td>
</tr>
<tr>
<td>Oxytoxum sceptrum (Stein) Schröder *</td>
<td>380</td>
<td>2.2</td>
</tr>
<tr>
<td>Oxytoxum sp. *</td>
<td>380</td>
<td>13.3</td>
</tr>
<tr>
<td>Phalacroma rotundata (Claparède & Lachmann) Kofoid & Michener</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podolampas elegans Schütt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podolampas palmipes Stein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prorocentrum compressum (Bailey) Abé ex Dodge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prorocentrum micans Ehrenberg *</td>
<td>1 140</td>
<td>8.9</td>
</tr>
<tr>
<td>Prorocentrum scutellum Schröder *</td>
<td>380</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Protoperidinium bipes (Paulsen) Balech *
Protoperidinium conicum (Gran) Balech *
Protoperidinium curtipes (Jorgensen) Balech *
Protoperidinium diabolus (Cleve) Balech *
Protoperidinium divergens (Ehrenberg) Balech *
Protoperidinium globulum (Stein) Balech
Protoperidinium oblongum (Aurivillius) Parke & Dodge *
Protoperidinium oceanicum (VanHöffen) Balech
Protoperidinium pyriforme (Paulsen) Balech
Protoperidinium steinii (Jorgensen) Balech
Protoperidinium sp.*
Scripsiella sp.*

PRYMNESIOPHYCEAE
Calciosolenia brasiliensis (Lohmann) Young *
Emiliania huxleyi (Lohmann) Hay & Mohler
Ophiaster sp.*
Syracosphaera pulchra Lohman *
Rhabdosphaera clavigera Murray & Blackman

DICTYOCHOPHYCEAE
Dictyocha fibula Ehrenberg *
Octactis octonaria (Ehrenberg) Hovasse *

CHRYSOPHYCEAE
Dinobryon sp.*

UNCERTAIN
Hermesinum adriaticum Zacharias *
Meringosphaera mediterranea Lohmann *
UGOVOR O KONCESIJI
17/19
za obavljanje gospodarske djelatnosti na lučkom području

LUČKE UPRAVE SENJ

sklopljen dana 02.04. 2019. godine u Senju,

između

LUČKE UPRAVE SENJ, Senj, Obala Kralja Zvonimira 12, koju zastupa ravnatelj Predrag Dešić, mag.ing.pp.to. (dalje u tekstu Davatelj koncesije)

i

trgovačkog društva " NORDIC FISH " d.o.o. Za ribarstvo, trgovinu i usluge, Nikole Tesle 46, 21 Zadar, OIB 13181248642, kojeg zastupa član uprave Miodrag Lacić (dalje u tekstu Ovlaštenik koncesije)

Predmet ugovora

Članak 1.

1.1. Na temelju ovog Ugovora, Davatelj koncesije daje Ovlašteniku koncesije ovlaštenje za gospodarsko korištenje kopnenog područja i morskog akvatorija u lukama Porat i Stinica.

1.2. Koncesijom se daje pravo Ovlašteniku koncesije da koristi slijedeće:
luka Porat
- 2.200 m² kopnenog područja za postavljanje više kontejnера i smještaj pripadajuće opreme
- 1.188 m² pripadajućeg morskog akvatorija (99 m x 12 m)
- privežište za brodicu do 12 m
luka Stinica
- 200 m² kopnenog područja na k.č. br. 2235/345 za postavljanje više kontejnера i smještaj pripadajuće opreme
- privežište za brodicu do 12 m
U prilogu grafika koncesioniranog područja.
Vrijeme korištenja koncesije

Članak 2.

2.1. Koncesija se daje na vrijeme od 10 (deset) kalendarskih godina s početkom primjene od 02. travnja 2019., pa zaključno do 31. prosinca 2028. s mogućnošću produljenja.

2.2. Koncesija može prestati prije isteka iz članka 2. stavak 1. samo u slučajevima određenim ovim Ugovorom, Pomorskim zakonikom i zakonom o morskim lukama (dalje u tekstu: Zakon).

Obveza Ovlaštenika koncesije

Članak 3.

3.1. Ovlaštenik koncesije se obvezuje obavljati djelatnost koja je predmet koncesije u skladu sa Zakonom te provoditi održavanje i zaštitu lučkog područja.

Članak 4.

4.1. Ovlaštenik koncesije dužan je o svom trošku sklopliti Ugovor o osiguranju kod osiguravajućeg društva na području Republike Hrvatske za sve štete u svezi djelatnosti koju obavlja te je dužan dokaz o tome dostaviti Lučkoj upravi Senj u roku od 30 dana od dana sklapanja ovog Ugovora.

Plaćanje za koncesiju

Članak 5.

5.1. U skladu sa Zakonom i ovim Ugovorom Ovlaštenik koncesije dužan je plaćati Davatelju koncesije naknadu za koncesiju.

5.2. Godišnja naknada koju Ovlaštenik koncesije plaća za koncesiju iznosi: 33.940,00 Kn

5.3. Godišnja naknada plaća se u dvije jednake rate po ispostavljenim računima sa danom dospeća 01.06. i 01.08. tekuće godine.

5.4. U slučaju da Ovlaštenik koncesije ne plaća naknadu u rokovima i iznosima određenim ovim člankom, Davatelj koncesije će ga pozvati da u roku od 15 dana uplati naknadu, zajedno sa zakonskom kamatom na godišnjoj razini. Ako ovlaštenik koncesije niti u naknadnom roku ne plati naknadu za koncesiju s kamatama, davatelj koncesije ima pravo oduzeti koncesiju.
U tom slučaju primjenjuju se odredbe Ugovora o oduzimanju koncesije.

Ostala prava i obveze ugovornih strana

Članak 6.

6.1. Ovlaštenik koncesije ima pravo i dužnost obavljati djelatnost za koju mu je dodjeljena koncesija sukladno pravilima struke i s pažnjom dobrog gospodarstvenika.

6.2. Pored uvjeta navedenih u ovom Ugovoru, Ovlaštenik koncesije se obvezuje poštovati sve propise Republike Hrvatske, uključujući i one koji se odnose na red u luci.

6.3. Ugovorne strane obvezuju se u mjeri u kojoj je to moguće da će si međusobno pružati pomoć i po potrebi sudjelovati u postupcima koji bi mogli biti pokrenuti protiv jedne od njih, a u vezi s koncesijom.

Oduzimanje koncesije

Članak 7.

7.1. Davatelj koncesije može oduzet koncesiju ako:
 a) Ovlaštenik koncesije ne poštuje odredbe o redu u luci
 b) se Ovlaštenik koncesije ne pridržava plana rada i programa

7.2. Davatelj koncesije oduzet će koncesiju ako utvrdi da Ovlaštenik koncesije:
 a) Obustavi izvršavanje djelatnosti za koju je dana koncesija, a time se narušava normalno funkcioniranje luke,
 b) Ne plaća ili neuredno plaća naknadu za koncesiju,
 c) Uz obavljanje koncesijske djelatnosti obavlja i drugu djelatnost za koju nije dobio koncesiju,
 d) Ne koristi koncesiju ili je ne koristi za svrhe za koje mu je dana.

7.3. U slučajevima iz prthodnog stavka pozvat će se Ovlaštenik koncesije da u roku od 3 dana od dana primitka obavijesti Davatelja koncesije, izjasni o razlozima zbog kojih se može oduzeti koncesija. Izjašnjenje koje navede Ovlaštenik koncesije ne spriječava Davatelja koncesije da oduzme koncesiju. Odluku o oduzimanju koncesije donosi Davatelj koncesije.

7.4. Oduzimanjem koncesije prestaje pravo Ovlaštenika koncesije stečeno ovim Ugovorom, te je dužan napustiti lučki prostor koji je predmet koncesije.

7.5. Ako je koncesija oduzeta, Ovlaštenik koncesije nema pravo na naknadu štete
Prestanak koncesije

Članak 8.

8.1. Koncesija prestaje:
 a) istekom vremena na koje je dana,
 b) odreknućem Ovlaštenika koncesije prije isteka vremena određenog u Odluci o koncesiji,
 c) prestankom pravne osobe, ako nasljednici, odnosno pravni sljednici ne zatraže potvrdu koncesije u roku od 30 dana od dana prestanka pravne osobe Ovlaštenika koncesije,
 d) oduzimanjem koncesije od strane Davatelja koncesije uz uvjete iz članka 30 Zakona.

8.2. Prestankom koncesije prestaje pravo Ovlaštenika koncesije stećeno ovim Ugovorom te je Ovlaštenik koncesije dužan prestati obavljati djelatnost koja je predmet koncesije.

8.3. Kada se Ovlaštenik koncesije odrekne koncesije prije isteka vremena za koje je koncesija dana, dužan je platiti Davatelju koncesije naknadu u svot koji odgovara jednoj trećini ugovorene naknade koja je određena člankom 5. ovog Ugovora.

Neprenosivost koncesije

Članak 9.

Završne odredbe

Članak 10.

10.1. Ugovorne strane suglasno utvrđuju da je otkazni rok za oduzimanje koncesije 30 dana od dana uvrštenja pismenog akta o oduzimanju ili odreknuću jedne ugovorne strane drugoj.

10.2. Ugovorne strane suglasno utvrđuju da će moguće sporove, koji bi proizašli u svezi provedbe ovog Ugovora rješavati mirmim putem. Ukoliko to ne bi bilo moguće, ugovaraju nadležnost stvarno nadležnog suda u Rijeci.
10.3. Ugovor je sastavljen u 5 (pet) istovjetnih primjeraka, od kojih svaka ugovorna strana zadržava po 2 (dva), 1 (jedan) se primjerak pohranjuje, odnosno upisuje u poseban upisnik koji vodi Lučka uprava Senj.

10.4. Izmjene i dopune Ugovora valjane su jedino ako su sastavljene u pisanom obliku i ako ih potpišu obje ugovorne strane.

Klasa: 003-01/19-01/14
Ur. broj: 2125/11-19-01
U Senju, 02.04. 2019.

Davatelj koncesije

Ovlaštenik koncesije

NORDIC FISH d.o.o.
ZADAR
IZVOD IZ KATASTARSKOG PLANA
Približno mjerni ispis 1: 2000

Datum ispisa: 08.04.2019
IZVOD IZ KATASTARSKOG PLANA
Približno mjerilo ispisa 1: 2000

Datum ispisa: 08.04.2019
Revised quotation

NORDIC FISH d.o.o.

ID: 13181248642
Nikole Tesle 46,
23.000 Zadar
Att: Miodrag Lacić
NORDIC FISH d.o.o.
ID: 13181248642
Nikole Tesle 46,
23.000 Zadar
Att: Miodrag Lacić
Mobile: 0955360468
E-mail: mlacic777@gmail.com

Date: 02-04-2019
Our ref.: JKH

EQUIPMENT QUOTE No.: 19.04.33

This quotation contains prices for the following equipment based on the information supplied by Nordic Fish D.o.o

- 3x Feeding platforms 115 tons
- Wireless and remote-control camera system for 3 sites with 8 cages on each site.
- Feeding system on feeding platform and subsea feeding in cages for 3 sites and 8 cages on each site.

Following modifications has been requested by customer:

Feeding platform is prepared for cold water system that has been discussed with customer to temperature control the environment for the fish, but equipment is not included at this stage.

Feeding platform will be produced as a square construction to minimize effect by wind (Bura). Feeding platform is made with ballast tanks to take into account the level in the silos and strong winds that can be in the area were Nordic Fish D.o.o is having their fish farms. The active ballast system is new technology for this type of feeding barges.

Feeding platform has been constructed in stainless steel for long lasting and easy to maintain in heavy salinity environment. Feeding platform is made by units that can be transported by road which makes the delivery quicker, cheaper and faster than traditional feeding barges.

1
Pisco Robotics
Rønnegade 1, 3th,
2100 København Ø
Denmark
Company Reg. nr.: 39456443
PISCO ROBOTICS EQUIPMENT DELIVERY:

Basic information per one Feeding Platform:
Length: 10 974 [mm]
Width: 10 974 [mm]
Height: 7 543 [mm]
Own weight: 46 500 [kg]
Main silo capacity: 115 [m³]
Intermediate silo capacity: 28 [m³]
Ballast tanks capacity: 138 [m³]

Feeding platform schematic view.

2
Pisco Robotics
Rønnegade 1, 3th,
2100 København Ø
Denmark
Company Reg. nr.: 39456443
Picture: Showing the feeding platform.
Material:
Austenitic stainless steel 304L.
Stainless steel 304L is covered by shell: osakryl & polyurethane.

Lifesaving, safety and emergency equipment:
- One (1) off life buoy with line.
- One (1) off life buoy with light.
- Four (4) off Seamaster lifejackets with light /depending.
- One (1) Fire-blanket 1,20 X 1,20 m.
- One (1) Fire-axe.
- Rechargeable flashlights: 2 pcs.
- Safety plan with will be displayed on the wheelhouse wall. Safety signs (fluorescent) such as emergency exits, fire routes and yellow/black marking as warning information installed on doors or communication ways. All valves, pipes, covers, doors, starters, switchboard, maneuvering desks etc. will be marked with signs with English or Croatian text.
- Rechargeable flashlights: 2 pieces, installed inside and near the entrance doors to control and GEN SET room.
- Fire detectors smoke/heat installed, one (1) in GEN SET ROOM and one (1) in control room.
- Fuel tank made as separated tank placed inside GEN SET room done by STAINLESS STEEL and fitted with see glass, air ventilation to deck and filling pipe from deck, and level indicators in control room.
- Search-light, Work light and anchor light installed in on top of control’s ROOM.

Loose fire-fighting equipment:
- Feeding platform will be equipped with:
- Four (4) off 6 kg fire extinguishers. Type AFFF foam, one (1) in control room and one (3) in GEN SET room.
- Fi-Fi system type Stat-X, to be installed in GEN SET room and released from control room /as additional option/.

All components are CE labelled / certified. Life buoys and life jackets are in accordance SOLAS requirements.

Power:
2 x Caterpillar marine generator C4.4 NA 400 kVA, 38 kWe 68,5 A

4
Pisco Robotics
Rønnegade 1, 3th,
2100 København Ø
Denmark
Company Reg. nr.: 39456443
Equipment for each Feeding Platform:

- 4 x Big-bags unloading station
- 2 x Caterpillar marine power generator C4.4 NA
- 1 x Fuel tanks 3000 l
- 1 x Bush 5,5 kW side blower
- 2 x KSB Amaline 200 2,5 kW submersible pump
- 2 x Lowara NSCS 200/150/40 4 kW pump
- 4 x Feeder from main silo with 2,2 kW 334 rpm drive
- 1 x FLEXI-DISC system
- 14 x Cardinal Scale Mfg. Co SB-5000S extensometer
- 14 x Feed dispenser with stepper motor with planetary gear 19N.m
- 8 x Water level sensor in the ballast tank Vegawell 52 0-0,4 bar
- 4 x Vegawell Vegaplus 61 active balusters
- 14 x Water & feed dosing valves with ROS ball valve series BV3PF
- 8 x Underwater feed dosing systems
- 1 x Control system
- 1 x Wireless communication system
- 1 x Alarm and fire alarm system
- 8 x Camera Systems
Feed dosing system. Comprising silos and selectors

Underwater feeding system, water supply and distribution system.

Underwater feeding system, piping.

Underwater camera system
Principles of operation:
The feed delivered in big-bags is unloaded to four silos using the unloading station. Next, the feeder placed in the silo starts emptying the silo and through Flexi-disc supplies the feed to the intermediate silos placed on a mass extensometer. When the intermediate weight silo receives the set feed value, it starts feeding the feed to the underwater feed system.

The feed is supplied with water to the fish cages at a distance of no more than 1000 meters using cables located under water. The underwater feeding system located in the central part of the fish cage is regulated by a camera placed under the feed dispenser outlet that rotates around its own axis.

By mixing the feed with water at the barge we have 2 big advantages:

- Less energy consumption as the feed is moved with water in the pipes and not with a traditional blower system.
- Less waste of feed as the pellets is not damaged in the pipes like they do in the traditional blower system.

Result is less energy consumption and higher percentage of the feed pellets reach the fish without any damage / waster.

The feeding platform is equipped with an active ballasting system that allows you to smoothly adjust the immersion level of the barge. Thanks to this system and compact, solid construction - the structure is able to withstand wind exceeding 200 km / h and waves of up to 2 m.

In addition, the barge is equipped with a system of four anchors stabilizing the device in a given place. Filling of four ballast tanks takes place by means of submersible pumps placed under the water surface. The barge is carried out using air injected into the ballast tanks using the side channel blower. The active ballasting system reacts automatically to the amount of fodder on the barge.

Thanks to the system of controls and safeguards - delivery of big-bag feed takes place smoothly and without any downtime. Measurements of the feed allow to precisely determine the required feed dose and underwater cameras - to optimize the feeding time.
The sealed, insulated and air-conditioned engine room equipped with two CAT marine power generators and a fuel tank ensures trouble-free operation for many days. The system allows you to fully automate the process of precise feed dosing up to 14 fish cages.

All elements that make up the feed system were made in accordance with the European Union standards / CE marked.
Feeding platform 3D

Feeding system specification:

Introduction
WATER DRIVEN (WD) automatic, salmonid farm feeding system. The system offered, is designed, engineered and manufactured to have high capacity and reliability. The system uses the proven technology developed over the years and incorporates the highest quality components that are readily available around the world. The system provides touch screen operation and PLC interface control. The system is a new operating, centralized water feeding system were pellets and water is mixed at the barge and pumped to the cages. System is easily programmable control of the feed dose and flush times for each point of distribution and is programmable for up to 4 feedings per day excellent distribution of feed across very large cages. The feeding system starts and stops itself in accordance to the feed times that you have programmed.

AUTOMATIC SALMONID FARM FEEDING SYSTEM

10
Pisco Robotics
Rønnegade 1, 3th,
2100 København Ø
Denmark
Company Reg. nr.: 39456443
The feeding system is a high quality, high capacity, technically advanced automatic feeding system, designed specifically for the aquaculture industry. This system utilizes the highest quality equipment and components to provide your salmonid farm with accuracy, capacity, and reliability. An electric driven system will provide flexibility and ease of installation and operation for the 8 salmon cages at your farm sites. Each system will provide a fully integrated water/feed pumping station, operators control panel, 4 x 25 metric ton feed storage silos and a 16-point valve distribution manifold. Four-inch diameter HDPE pipes will transport the feed from the valve distribution manifold to a feed spitting manifold, which will evenly split the feed into the subsea feeding spreader in each cage. Subsea feeding spreader is with rotation to spread the feed in 360 degrees (just like a surface spreader).

Performance
The feeding system has an average feed throughput capacity of up to 10 metric tons per hour. The system will pump 3000 to 5700 liters / min and will transfer batches of up to 300 kg feed in water slurry into the main distribution header. The feed / water mixture will travel through one (one cage / four spiders are fed at a time) of the 4.0-inch main feed lines to the feed splitter, which then evenly distributes feed to subsea feeding spreader each cage. The system is designed to transfer the feed up to (1000 meters) from the pumping station. The main water pump will be powered by an electric motor.

Feeding Control System
This system utilizes a Programmable Logic Controller (PLC) based feeder control system for maximum flexibility and ease in operation and troubleshooting. The basic system will allow operator interface with the PLC via a touch screen display. The functions that are controlled from the operator’s station are:
Feed Time Plans: This function automatically starts and stops the feeding system (including the diesel), up to 5 times per day and feeds the programmed dose to each salmonid cage.
Feed Dose: This function programs the daily amount of feed that is delivered to each of the salmon cages. This amount of feed can then be divided into 5 doses per day as a percentage of the daily feed amount.
Flush Cycle Times: This function sets the amount of time that each of the feed lines is flushed with water at the end of each feed dose. This ensures that all of the feed is distributed to the cages and is not left inside of the feed piping.
Manual Operation: This function allows the operator to control the water pump and select a cage for distribution, when lime or fertilizer is to be added.

11
Pisco Robotics
Rønnegade 1, 3th,
2100 København Ø
Denmark
Company Reg. nr.: 39456443
Sub Sea Feeding system:

Sub Sea feeding schematic view.
Sub Sea feeding 3D view.

Sub Sea feeding platform connection.
CAMERA SYSTEM SPECIFICATION

Underwater camera for feeding controlling
The underwater camera can see 360° degrees due to seven individual cameras installed inside, providing a clear image with a resolution of 1920x1080 pixels. There is no need to rotate cameras as you can see in all angles simultaneously giving superior flexibility and user-friendliness. An underwater camera enables continuous monitoring of the feeding process performance. This helps avoiding over or under-feeding, thus ensuring optimal fish growth, in addition to ensuring that a reduced amount of feed is released into the environment. The camera is equipped with a color sensor for increased photosensitivity. The lowest luminance level is 0.003 lux. All cameras in the series are waterproof up to 50 meters, as they have been designed with highly robust and corrosion-resistant materials (PA12).

The camera has an integrated temperature sensor, diving/pressure sensor and oxygen sensor to ensure the user is always updated on the fish environment at all depths in the cage. The camera has also ultrasonic flow meter for direction and speed of the current measurement.

Underwater camera for dead fish controlling
The underwater camera will be hanging on a winch controlling depth positioning to 14 optimize counting and collecting of the dead fish. Special programmed will allow to turn on the system to collect, count and transport fish to the surface or in a future to collect dead fish melted.

Specification:
14
Pisco Robotics
Rønnegade 1, 3th,
2100 København Ø
Denmark
Company Reg. nr.: 39456443
<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1920 x 1080</td>
</tr>
<tr>
<td>Image sensor</td>
<td>Color</td>
</tr>
<tr>
<td>Image angle</td>
<td>63°</td>
</tr>
<tr>
<td>Luminance sensitivity</td>
<td>0.0003 lux</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>Yes</td>
</tr>
<tr>
<td>Depth/pressure sensor</td>
<td>Yes</td>
</tr>
<tr>
<td>Oxygen sensor</td>
<td>Yes</td>
</tr>
<tr>
<td>Compass</td>
<td>Yes</td>
</tr>
<tr>
<td>Gyroscope</td>
<td>Yes</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Yes</td>
</tr>
<tr>
<td>IP certification</td>
<td>IP69 (50m)</td>
</tr>
<tr>
<td>Video signal</td>
<td>Digital</td>
</tr>
<tr>
<td>Construction material</td>
<td>PA12</td>
</tr>
<tr>
<td>Power</td>
<td>24 V (AC/DC)</td>
</tr>
<tr>
<td>Weight</td>
<td>2.5 kg</td>
</tr>
</tbody>
</table>
Surveillance surface camera

The surveillance camera is made of strong and corrosion-free PA12. It has been designed specifically to withstand the most demanding conditions of the sea and is built to last for many years. It is waterproof with IP68 protection level and can withstand temperature between -5°C to +60°C. The camera has a powerful 30x optical zoom.

Specification:

<table>
<thead>
<tr>
<th></th>
<th>Surface camera EI-SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>1920 x 1080</td>
</tr>
<tr>
<td>Image sensor</td>
<td>Color</td>
</tr>
<tr>
<td>Optical zoom</td>
<td>30x</td>
</tr>
<tr>
<td>Image angle</td>
<td>60°</td>
</tr>
<tr>
<td>Luminance sensitivity</td>
<td>0,0015 lux</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>Yes</td>
</tr>
<tr>
<td>IP certification</td>
<td>IP68 (50m)</td>
</tr>
<tr>
<td>Video signal</td>
<td>Digital</td>
</tr>
<tr>
<td>Construction material</td>
<td>PA12</td>
</tr>
<tr>
<td>Power</td>
<td>24 V (AC/DC)</td>
</tr>
<tr>
<td>Weight</td>
<td>2,0 kg</td>
</tr>
</tbody>
</table>
Control room

All cameras are connected to the receiver on the barge by optical fibre. It provides the user with full control as it enables access to all cameras from barge, office, home, in the car or any location where internet access is available. Video recordings from the last seven days are stored on a server.

Our software provides a comfortable and convenient overview of the activity in the cages and on the barge. The software supports multiple monitors and the number of monitors can be easily customized by the user. You can easily choose which camera to display and each image can be viewed in a full-screen mode.