ZAHTJEV

Zahtjev za izdavanjem Upute o sadržaju Studije utjecaja na okoliš za zahvat izgradnje VE Ljut

<table>
<thead>
<tr>
<th>Zahvat</th>
<th>Zahtjev za izdavanjem Upute o sadržaju STUDIJE UTJECAJA NA OKOLIŠA ZA ZAHVAT IZGRADNJE Vjetroelektrane Ljut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vrsta dokumentacije</td>
<td>Zahtjev</td>
</tr>
<tr>
<td>Naručitelj</td>
<td>ENCRO d.o.o.</td>
</tr>
<tr>
<td>Ugovor broj</td>
<td>1521-21</td>
</tr>
<tr>
<td>Voditelj izrade</td>
<td>dr. sc. Božica Šorgić, mag. chem.</td>
</tr>
<tr>
<td>Članovi stručnog tima</td>
<td>Oikon d.o.o</td>
</tr>
<tr>
<td>dr. sc. Vladimir Kušan, mag. ing. silv., CE</td>
<td></td>
</tr>
<tr>
<td>Zoran Poljanec, mag. educ. biol.</td>
<td></td>
</tr>
<tr>
<td>Ivona Žiža, mag. ing. agr.</td>
<td></td>
</tr>
<tr>
<td>Marta Mikulič, mag. oecol.</td>
<td></td>
</tr>
<tr>
<td>Morana Belamaric Šaravanja, dipl. ing. biol., univ. spec. oecoing.</td>
<td></td>
</tr>
<tr>
<td>Lea Petohleb, mag. ing. geol.</td>
<td></td>
</tr>
<tr>
<td>Nebojša Subanović, mag. phys. et geophys.</td>
<td></td>
</tr>
<tr>
<td>Andrea Neferanović, mag. ing. silv.</td>
<td></td>
</tr>
<tr>
<td>Jelena Mihalić, mag. ing. prosp. arch.</td>
<td></td>
</tr>
<tr>
<td>Ksenija Hocenski, mag. biol. exp.</td>
<td></td>
</tr>
<tr>
<td>Petra Patačko, mag. oecol.</td>
<td></td>
</tr>
<tr>
<td>Željko Ćučković, univ. bacc. inf.</td>
<td></td>
</tr>
<tr>
<td>Direktor</td>
<td>Dalibor Hatić, mag. ing. silv.</td>
</tr>
</tbody>
</table>

Ciljevi održivog razvoja čijoj provedbi ovaj projekt doprinosi

![Oikon Logo]
SADRŽAJ

1. **UVOD** .. 1
 1.1. Podaci o nositelju zahvata ... 1
 1.2. Izvadak iz sudskog registra .. 1
 1.3. Podaci o ovlašteniku .. 4

2. **PODACI O ZAHVATU I LOKACIJI ZAHVATA** ... 5
 2.1. Točan naziv zahvata s obzirom na popise zahvata iz Uredbe o procjeni utjecaja zahvata na okoliš. 5
 2.2. Opis obilježja zahvata ... 5
 2.3. Tehnološki opis vjetroelektrane .. 5
 2.3.1. Lokacija zahvata ... 5
 2.3.2. Jedinstveni opis zahvata ... 6
 2.3.2.1. Vrsta radova ... 6
 2.3.2.2. Postojeće stanje na lokaciji .. 6
 2.3.2.3. Obuhvat zahvata ... 6
 2.3.2.4. Namjena i kapacitet građevine .. 9
 2.3.2.5. Opis tehnološkog rješenja .. 9
 2.3.2.6. Elektrotehničke karakteristike .. 10
 2.3.2.7. Uvjeti za oblikovanje građevine, ostali uvjeti i drugi važni elementi .. 10
 2.3.3. Način i uvjeti priključenja građevine na prometnu, elektroenergetsku i drugu infrastrukturu 11
 2.3.3.1. Priključak Vjetroelektrane VE Ljutna prijenosnu EE mrežu .. 11
 2.3.3.2. Priključak na prometnu infrastrukturu ... 12
 2.3.3.3. Priključak na komunalnu infrastrukturu .. 12
 2.3.4. Mjere sprječavanja nepovoljnih utjecaja na okoliš i prirodu ... 12
 2.3.4.1. Opće mjere zaštite tijekom građenja ... 12
 2.3.4.2. Prostorno planske mjere zaštite od buke .. 13
 2.3.4.3. Projektne mjere zaštite od udara groma i požara ... 13
 2.3.5. Mjere prema posebnim propisima .. 13
 2.3.5.1. Mjere zaštite od požara ... 13
3. PODACI O LOKACIJI I OPIS LOKACIJE ZAHVATA

3.1. Šire područje smještaja zahvata

3.2. Uže područje smještaja zahvata

3.3. Analiza usklađenosti zahvata s važećim dokumentima prostornog uređenja

3.4. Pedološke značajke i poljoprivredno zemljište

3.5. Vodna tijela

3.6. Bioraznolikost

3.7. Zaštićena područja

3.8. Ekološka mreža

3.9. Krajobrazne značajke

3.10. Gospodarske djelatnosti

3.11. Kulturna baština

3.12. Naselja i stanovništvo

3.13. Buka

5. SAŽETI OPIS MOGUĆIH UTJECAJA ZAHVATA NA OKOLIŠ .. 63
 5.1. Utjecaj na tlo .. 63
 5.2. Utjecaj na stanje voda ... 63
 5.3. Utjecaj na bioraznolikost .. 64
 5.4. Utjecaj na zaštićena područja .. 67
 5.5. Utjecaj na ekološku mrežu .. 68
 5.5.1. Samostalni utjecaji zahvata na ekološku mrežu ... 68
 5.5.2. Skupni (kumulativni) utjecaji zahvata na ekološku mrežu 70
 5.5.3. Zaključak o utjecaju zahvata na ekološku mrežu ... 73
 5.6. Utjecaj na krajobrazne značajke .. 73
 5.7. Utjecaj na kulturno-povijesnu baštinu ... 74
 5.8. Utjecaj na gospodarske djelatnosti ... 74
 5.8.1. Šumarstvo .. 74
 5.8.2. Divljač i lovstvo .. 75
 5.9. Kvaliteta zraka i utjecaji .. 75
 5.9.1. Kvaliteta zraka .. 75
 5.9.2. Utjecaj na kvalitetu zraka tijekom izgradnje ... 77
 5.9.3. Utjecaj na kvalitetu zraka tijekom korištenja .. 78
 5.10. Klima – sadašnje stanje .. 78
 5.10.1. Klima općenito i klasifikacije .. 78
 5.10.1.1. Klasifikacija prema Köppenu .. 79
 5.10.1.2. Klasifikacija prema Thornthwaitu ... 80
 5.10.2. Temperatura zraka .. 80
 5.10.3. Oborina .. 80
 5.10.4. Vjetar .. 81
 5.11. Klimatske promjene i utjecaji ... 82
5.11.1. Klimatske promjene .. 82
 5.11.1.1. Rezultati numeričkog modeliranja klimatskih promjena .. 82
 5.11.2. Utjecaj zahvata na klimatske promjene .. 85
 5.11.3. Utjecaj klimatskih promjena na zahvat .. 86
 5.11.4. Zaključak o utjecaju klimatskih promjena .. 90

5.12. Utjecaj od povećanih razina buke ... 91

5.13. Utjecaj na stanovništvo ... 92

5.14. Utjecaj na infrastrukturu ... 92

5.15. Utjecaj od nastanka otpada .. 93

5.16. Kumulativni utjecaji ... 93

5.17. Vjerojatnost značajnih prekograničnih utjecaja .. 96

6. PRIJEDLOG RAZMATRANIH MJERA ZAŠTITE OKOLIŠA I PROGRAMA PRAĆENJA OKOLIŠA 97

7. IZVORI PODATAKA ... 98
 7.1. Zakoni i propisi .. 98
 7.2. Znanstvena i stručna literatura ... 100
 7.3. Internetski izvori podataka ... 104

8. PRILOZI ... 105
 8.1. Popis ciljnih vrsta područja ekološke mreže .. 105
 8.2. Ovlaštenje tvrtke OIKON d.o.o. za obavljanje poslova iz područja zaštite okoliša 111
 8.3. Ovlaštenje tvrtke OIKON d.o.o. za obavljanje poslova iz područja zaštite prirode 118
1. UVOD

Sukladno Prilogu I. Uredbe o procjeni utjecaja zahvata na okoliš (NN 61/14 i 03/17) Vjetroelektrana „LJUT“, na popisu je zahvata za koje se provodi procjena utjecaja zahvata na okoliš, a za koje je nadležno Ministarstvo gospodarstva i održivog razvoja, pod točkom 4. „Vjetroelektrane snage veće od 20 MW“.

1.1. Podaci o nositelju zahvata

Naziv i sjedište: POŠTAK d.o.o.
Jurišićeva 1a
10 000 Zagreb

OIB: 23548419031
MB: 02755173

Odgovorna osoba: Ilijko Ćurić
+385 (0)1 4693 040
iljko.curic@vjetroelektrane.hr

1.2. Izvadak iz sudskog registra
Izgradnja vjetroelektrane Ljut

REPUBLIKA HRVATSKA
TRGOVAČKI SUD U ZAGREBU

IZVADAK IZ SUDSKOG REGISTRA

SUBJEKT UPISA

MBR:
080761641

OIB:
23548619031

TVRTKA:
1 POŠTAK d.o.o. za usluge
1 POŠTAK d.o.o.

SJEDIŠTE/ADRESA:
1 Zagreb (Grad Zagreb)
Jurišićeva 1/a

PRAVNI OBLIK:
1 društvo s ograničenom odgovornošću

PREDMET POSLOVANJA:
1 * - savjetovanje u vezi s poslovanjem i
 upravljanjem
1 * - organiziranje seminara i tečajeva
1 * - kupnja i prodaja robe
1 * - obavljanje trgovačkog posredovanja na domaćem i
 inozemnom tržištu
1 * - zastupanje inozemnih tvrtki
1 * - poslovanje nekretninama
1 * - proizvodnja električne energije
1 * - trgovanje, posredovanje i zastupanje na tržištu
 energije
1 * - projektiranje energetskih industrijskih
 postrojenja i objekata

OSNIVAČI/ČLANOVI DRUŠTVA:
1 Ilijo Curić, OIB: 53751593543
Zagreb, Martićeva 8
1 - jedini član d.o.o.

OSOBNE OVLAŠTENJE ZA ZASTUPANJE:
1 Ilijo Curić, OIB: 53751593543
Zagreb, Martićeva 8
1 - direktor
1 - zastupa pojedinačno i samostalno

TEMELNJI KAPITAL:
1 20.000,00 kuna

PRAVNI ODNOSE:

D004, 2017-08-08 10:16:03
REPUBLIKA HRVATSKA
TRGOVAČKI SUD U ZAGREBU
IZVADAČ IZ SVJEDSKOG REGISTA

SUBJEKT UPISA

PRAVNI ODNOSI:
Osnivački akt:

FINANCIJSKA IZVJEŠĆA:

Predano Eu 27.04.17
God. za razdoblje 2016. 01.01.16 - 31.12.16

GFI-POD izvještaj

Upise u glavnu knjigu proveli su:

<table>
<thead>
<tr>
<th>BRU Tt</th>
<th>Datum</th>
<th>Naziv suda</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001 Tt-11/5529-2</td>
<td>21.04.2011</td>
<td>Trgovački sud u Zagrebu</td>
</tr>
<tr>
<td>eu</td>
<td>/</td>
<td>31.03.2012 elektronički upis</td>
</tr>
<tr>
<td>eu</td>
<td>/</td>
<td>20.03.2013 elektronički upis</td>
</tr>
<tr>
<td>eu</td>
<td>/</td>
<td>23.06.2014 elektronički upis</td>
</tr>
<tr>
<td>eu</td>
<td>/</td>
<td>19.06.2015 elektronički upis</td>
</tr>
<tr>
<td>eu</td>
<td>/</td>
<td>24.03.2016 elektronički upis</td>
</tr>
<tr>
<td>eu</td>
<td>/</td>
<td>27.04.2017 elektronički upis</td>
</tr>
</tbody>
</table>

U Zagrebu, 08. kolovoza 2017.

Ovlaštena osoba

D004, 2017-08-08 10:16:01 Stranica: 2 od 2
1.3. Podaci o ovlašteniku

Naziv i sjedište: Oikon d.o.o. Institut za primijenjenu ekologiju
Trg senjskih uskoka 1-2
10 000 Zagreb

Direktor: Dalibor Hatić mag.ing.silv., CE
Broj telefona: +385 (0)1 550 7100

2. PODACI O ZAHVATU I LOKACIJI ZAHVATA

2.1. Točan naziv zahvata s obzirom na popise zahvata iz Uredbe o procjeni utjecaja zahvata na okoliš

Prema Prilogu I - popis zahvata za koje se provodi procjena utjecaja zahvata na okoliš, a za koje je nadležno Ministarstvo gospodarstva i održivog razvoja, predmetni zahvat pripada u kategoriju:

4. Vjetroelektrane snage veće od 20 MW

2.2. Opis obilježja zahvata

Na promatranoj lokaciji u Općini Gračac investitor Poštak d.o.o. planira izgradnju vjetroelektrane Ljut (u daljnjem tekstu „VE LJUT“) snage do 300 MW, koja se sastoji od 50 vjetroagregata, na dijelu katastarskih općina k.o. Velika Popina, k.o. Grab i k.o. Glogovo, Općina Gračac, Zadarska županija.

Vrsta radova obuhvaća izgradnju VE LJUT snage do 300 MW u sedamnaest faza, pri čemu faza predstavlja vjetroagregat s temeljem, plato, elektro i DTK kabel do trafostanice (u dogovoru s HOPS-om) te pristupni put do vjetroagregata koji predstavlja funkcionalnu cjelinu na način da se istim može nesmetano pristupiti do agregata kompletnom prometnicom unutar pripadajuće faze.

2.3. Tehnološki opis vjetroelektrane

Za planirani zahvat izrađeno je idejno rješenje (Idejno rješenje; Elektrotehnički projekt, VE LJUT, B.P. IR-VE LJUT-12/21, Projektantski ured ENCRO d.o.o., prosinac 2021.) projekta vjetroelektrane koje je dano u nastavku Zahtjeva.

2.3.1. Lokacija zahvata

Prostor zone zahvata karakterizira iznimno krševito i suho područje, izuzimajući zonu Korita. Zbog položaja i klimatskih uvjeta lokacija je izložena učestalim vjetrovima. Pokrov terena prilagođen je takvim uvjetima i na većem dijelu lokacije zastupljene su prostrene travnjačke površine koje se izmjenjuju s površinama golog krša oko vrhova te manjim šumskim predjelima u usjecima i zaštićenim padinama.

Na širem području zahvata VE LJUT smještena je postojeća vjetroelektrana VE ZD6 od četiri vjetroagregata i VE Proširenje ZD6 od trinaest vjetroagregata.
Lokacija VE Ljut na području općine Gračac izabrana je temeljem sljedećih kriterija:

− povoljnog vjetra,
− male gustoće naseljenosti,
− odsutnosti većih površina pod šumskom vegetacijom,
− blizine pristupnih putova,
− blizine postojeće elektroenergetske mreže,
− odsustva odgovarajućih režima zaštite (prirodne ili kulturne baštine) i
− lokacija je predviđena u prostornom planu županije/građa kao mogući prostor za izgradnju vjetroelektrana.

2.3.2. Jedinstveni opis zahvata

Na predmetnoj lokaciji u blizini mjesta Velika Popina investitor Poštak d.o.o. planira izgradnju vjetroelektrane VE Ljut ukupne snage oko 300 MW. Navedena vjetroelektrana sastoji se od pedeset vjetroagregata smještenih prema Grafičkom prilogu na Slici 2.3-1.

Konačna tehnička rješenja vjetroagregata ovisiti će o komercijalno dostupnoj opremi u trenutku ugovaranja isporuke. Ovo idejno rješenje ni na koji način ne nameće obavezu ugovaranja točno specifičnog komercijalno tehničkog rješenja.

2.3.2.1. Vrsta radova

Vrsta radova obuhvaća izgradnju VE Ljut snage do 300 MW u sedamnaest faza, pri čemu fazi predstavljaju podfaze. Podfaza se sastoji od vjetroagregata sa svojim temeljem, platoom, elektro i DTK kabelom do prijeđene trafostanice (Ugovor o priključenju) te pristupnog puta do vjetroagregata koji predstavlja funkcionalnu cjelinu na način da se istim može nesmetano pristupiti do agregata kompletom prometnicom unutar pripadajuće faze.

Za predmetnu vjetroelektranu neće se formirati posebne građevinske čestice.

2.3.2.2. Postojeće stanje na lokaciji

Vjetroelektrana VE Ljut spojit će se na prijenosnu elektroenergetsku mrežu sukladno uvjetima priključenja HOPS-a.

2.3.2.3. Obuhvat zahvata

Planirano područje izgradnje VE Ljut raspolaže dobro razvijenom prometnom i elektroprijenosnom infrastrukturuom.
Za potrebe dopreme elemenata za izgradnju vjetroelektrane i manipulativnog prostora za montažu vjetroagregata te za potrebe održavanja koristit će se uglavnom postojeći putevi, a tamo gdje je potrebno provesti će se rekonstrukcija ili prilagodba trase uz suglasnost Hrvatskih šuma prema potrebama konfiguracije terena.

Pregledna situacija s razmještajem vjetroagregata prikazana je u nastavku na grafičkom prilogu – Slika 2.3-1 Pregledna situacija – Novo stanje.
Slika 2.3-1 Pregledna situacija – novo stanje na katastarskoj podlozi (Izvor: Idejno rješenje, ENCRO d.o.o., prosinac 2021.)
2.3.2.4. Namjena i kapacitet građevine

Vjetroelektrana je složena građevina namijenjena za proizvodnju električne energije iz kinetičke energije vjetra. Sustav vjetroagregata za proizvodnju električne energije uvjetovan je tehničkim normama (HRN EN 61400 serija normi) i razinom razvoja uređaja za konverziju u električnu energiju. U vjetroagregate nove generacije su ugrađeni materijali s najnovijim tehnološkim odlikama pri čemu su veze sa vanjskim sustavom digitalizirane u većem obimu, što omogućuje bolju optimizaciju rada i bržu reakciju na promjene pogonskih uvjeta.

2.3.2.5. Opis tehnološkog rješenja

Vjetroagregati se dizajniraju kako bi učinkovito pretvorili kinetičku energiju vjetra u električnu energiju. Strujanje vjetra preko lopatica uzrokuje zakretanje rotora vjetroagregata te time i zaokretanje rotora generatora što dovodi do induciranja naponja i struja u statoru generatora. Tehnološke inovacije i nova saznanja u projektiranju te njihovo implementiranje u proizvodnji rezultiraju osjetnim poboljšanjem performansi vjetroagregata. Primjenom najbolje dostupne tehnologije, vjetroagregati su doživjeli optimizaciju proizvodnje mehaničkih i električnih komponenti, tako da se primjerice ugrađuju generatori većih snaga što omogućava veću proizvodnju električne energije uz manje zahtjeve na utrošak materijala na stup i temelj vjetroagregata. Također, kako bi se smanjili gubitci u kabelima, transformator se smješta u gondoli vjetroagregata, umjesto u podnožju stupa vjetroagregata ili zasebnoj tipskoj montažnoj trafostanici.

Obzirom na brzi tehnološki razvoj u industriji proizvodnje električne energije iz energije vjetra, proizvođači opreme su napustili praksu navođenja točnih karakteristika vjetroagregata i umjesto toga više izvedbi vjetroagregata objedinjuju pod oznakom jedinstvene platforme (klase). Iz najmanjeg mogućeg broja tehnološki standardiziranih cjelina vjetroagregata proizvode se različite izvedbe vjetroagregata. Konačne karakteristike (nominalna snaga, vrsta prijenosnog mehanizma, veličina rotora i sl.) vjetroagregata za Vjetroelektranu ovisiti će o komercijalno dostupnim izvedbama vjetroagregata pojedine platforme u trenutku ugovaranja kupnje opreme. Na ovaj način konačni izbor vjetroagregata će predstavljati optimalno dostupnu opremu s pogleda tehnoloških inovacija, iskorištenja obnovljivog resursa vjetra, lokalnih klimatskih uvjeta i zaštite okoliša u cilju najveće dostupne energetske učinkovitosti.

Skalabilnost, modularnost i fleksibilnost odabira karakteristika vjetroagregata zasnovanih na istoj platformi, osim poboljšanja proizvodnje i boljeg prilagođenja klimatskim uvjetima na lokaciji, omogućuje efikasniji servis i smanjene troškove logistike. Napredna izvedba vjetroagregata je posebno dizajnirana da može podnijeti kratkotrajno smanjenje na mrežu zbog kvarova u mreži. Navedena tehnološka opcija doprinosi stabilnosti elektroenergetskog sustava i omogućuje vjetroagregatu prolazak kroz stanje kvara u mreži. Moderni vjetroagregati priključeni na elektroenergetsku mrežu putem pretvarača napona i frekvencije mogu pružati i druge mrežne usluge kao npr. regulacija napona, frekvencije i faktora snage.

U nastavku su navedene tipske tehničke karakteristike vjetroagregata:

<table>
<thead>
<tr>
<th>Visina:</th>
<th>Visina vrha lopatice</th>
<th>oko 225 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Promjer čeličnog šupljeg stupa na temelju:</td>
<td>oko 5.3 m</td>
</tr>
<tr>
<td></td>
<td>Promjer na vrhu čeličnog šupljeg stupa:</td>
<td>oko 3.5 m</td>
</tr>
<tr>
<td>Tip stupa:</td>
<td>čelični cijevni</td>
<td></td>
</tr>
</tbody>
</table>

Skalabilnost, modularnost i fleksibilnost odabira
Izgradnja vjetroelektrane Ljut

Rotor:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Broj lopatica rotora:</td>
<td>3</td>
</tr>
<tr>
<td>Promjer rotora:</td>
<td>do 190 m</td>
</tr>
<tr>
<td>Opseg broja okretaja:</td>
<td>Oko 5 do 9 o/min</td>
</tr>
<tr>
<td>Regulacija snage:</td>
<td>Pitch i regulacija momenta s promjenjivom brzinom</td>
</tr>
</tbody>
</table>

Uevalna/Izalena brzina rada:

oko 3 m/s / oko 27 m/s

2.3.2.6. Elektrotehničke karakteristike

Snaga

6 MW

Nominalni napon

690(800) V

Generator

Izvedba 1: Trofazni, asinkroni generator u dvostrano napajanoj izvedbi (DFIG) ili izvedbi s promjenjivim klizanjem

Izvedba 2: Sinkroni generator s permanentnim magnetima

Izvedba 3: Asinkroni generator sa pretvaračem napona i frekvencije

Priklučak generatora na mrežu

Preko pretvarača napona i frekvencije i blok transformatora

Nazivni faktor snage vjetroagregata

0,9 cap. – 0,9 ind.

Upravljanje i nadzor

Mikroprocesorsko uz daljinski nadzor i upravljanje

Tehničke karakteristike transformatora:

Napon na primaru 20(35) kV

Napon na sekundaru 690(800) V

Grupa spoja Dyn 11 ili Dyn 1

Uk% = 8-10%

Pretvarač napona i frekvencije:

AC-DC-AC

4Q B2B sustav

Sve električne karakteristike ovise o konačnim komercijalnim izvedbama vjetroagregata u trenutku ugovaranja opreme. Karakteristike kao što su krivulja snage uključujući maksimalnu snagu se podešavaju putem softverskih parametara unutar klase vjetroagregata te ovise o mikrolokacijskim uvjetima svakog vjetroagregata.

2.3.2.7. Uvjeti za oblikovanje građevine, ostali uvjeti i drugi važni elementi

Oblikovanje vjetroagregata uvjetovano je prvenstveno tehničkim normama (HRN EN 61400 serija normi) i razinom razvoja uređaja za konverziju energije vjetra u električnu energiju.

Gondola vjetroagregata se montira na čelični cijevni toranj tj. stup vjetroagregata. Zakretanje gondole vjetroagregata osigurava prstenasti ležaj i sustav zupčanika sa servo motorima. Ležaj obično zakreće do
Izgradnja vjetroelektrane Ljut deset električnih motora sa zupčastim reduktorom koji ujedno potpomažu stabilizaciju odabrane pozicije gondole. Upravljački sustav vjetroagregata osigurava nadzor vitalnih dijelova vjetroagregata i prijenos mjernih meteoroloških parametara.

Vjetroagregat se pokreće automatski pri brzini vjetra od 3 m/s. Instaliranu snagu generator ostvaruje pri brzini vjetra od 12 do 13 m/s. Kod viših brzina vjetra, snaga vjetroagregata se regulira na softverskim parametrima definiraju snagu (unutar klase). Konstantnost snage i regulacija lopatica pri različitim brzinama vrtnje smanjuje dinamičko opterećenje na konstrukciju vjetroagregata kao i na elektroenergetsku mrežu. Ukoliko prosječna brzina vjetra premaši graničnu brzinu od 25 m/s, vjetroagregat radi smanjenom izlaznom snagom do brzine vjetra do 27 m/s. Za brzine vjetra veće od 27 m/s, vjetroagregat se isključuje uz istovremeno zakretanje lopatica okomito na smjeru vjetra. Kad se brzina vjetra spusti ispod brzine određene za ponovno pokretanje vjetroagregata (restartna brzina), sigurnosni sustav automatski ponovno uključuje vjetroagregat.

Visina vrha lopatice vjetroagregata (eng. tip height) iznosi do 225 m. Promjer stupa vjetroagregata pri tlu iznosi oko 5,3 m, dok pri samom vrhu iznosi oko 3,5 m. Čelični šuplji konični stup ravna je ploha bez otvora, s ulaznim vratima pri dnu. Na vrhu stupa postavljena je rotirajuća gondola s ugrađenom opremom. Na gondolu je pričvršćen rotor s lopaticama. Završna obrada vanjske površine čeličnog stupa je zaštitni sloj. Završni sloj je izveden u svijetlosivoj ne reflektirajućoj boji.

Generator je trofazni asinkroni u dvostrano napajanoj izvedbi ili izvedbi s promjenjivim klizanjem. Generator je s rotorom povezan preko osovine i multiplikatora s izvedenim prijenosnim mehanizmom u tri stupnja. Konstrukcija generatora posebno je dizajnirana da bi se osigurala visoka učinkovitost pri djelomičnim opterećenjima.

Armirani temelji stupova vjetroagregata su osmerokutnog oblika s uzdignutim postamentom za postavljanje stupa vjetroagregata. Izvedba i projekt temelja stupa treba biti napravljen u skladu s važećim standardima, HRN EN 61400-1 normom i dostavljenim silama na temelje vjetroagregata (definira proizvođač vjetroagregata) za određenu izvedbu vjetroagregata i uvjete vjetra na lokaciji. SN trafostanice zajedno sa sklopnom opremom se ovisno o komercijalnoj izvedbi vjetroagregata mogu nalaziti unutar vjetroagregata ili u zasebnom montažnom objektu pored vjetroagregata. Konačna izvedba SN trafostanice u tom pogledu će biti definirana glavnim projektom.

2.3.3. Način i uvjeti priključenja građevine na prometnu, elektroenergetsku i drugu infrastrukturu

2.3.3.1. Priključak Vjetroelektrane VE Ljutna prijenosnu EE mrežu

Vjetroagregati faze će biti povezani internom kabelskom mrežom napona 20(35) kV, ukopanom oko 0,80 m dubine, koja se polaže uz pristupni put. Sve proizvodne jedinice će biti međusobno povezane internom DTK mrežom ukopanom oko 0,80 m dubine u kanal s električnim kabelima, koja služi za prijenos podataka o parametrima rada postrojenja vjetroagregata.
VE Ljut spojiti će se na prijenosnu elektroenergetsku mrežu sukladno uvjetima HOPS-a.

Kao moguće rješenje, za potrebe preuzimanja proizvodnje planirane vjetroelektrane priključne snage 300 MW, predlaže se formiranje mrežnog čvora 220kV, proširenjem i izgradnjom RP 220kV u postojećoj trafo stanici TS 110/33kV Velika Popina i uvođenjem postojećeg dalekovoda DV 220kV Krš Pađene – Brinje po principu uvod/izvod. Detaljni opis priključenja bit će naveden u Elektroenergetskoj suglasnosti te Ugovoru o priključenju.

Ukoliko se tijekom životnog vijeka vjetroelektrane jave promjene povezane uz opći razvoj elektroenergeteške mreže koji su od utjecaja na rad vjetroelektrane kao i eventualne promjene na vjetroelektrani koje su od utjecaja na elektroenergetsku mrežu regulirat će se posebnim ugovorom s operatorm prijenosnog sustava.

2.3.3.2. Priključak na prometnu infrastrukturu

Pristupni putevi dijelom se podudaraju s postojećom trasom protupožarnih prosjeka s karakteristikama šumske ceste, a gdje je potrebno rekonstruirati će se uz suglasnost Hrvatskih šuma te će biti precizno definirani Ugovorom o korištenju šumske ceste. Također, za pristup VE Ljut s državne ceste D1 Gračac-Knin koristit će se, gdje je moguće, postojeći pristupni putevi izgrađeni za potrebe VE Proširenje ZD6. Na istočnu stranu lokacije prilazit će se šumskim putem koji se nastavlja na županijsku cestu Ž5203. Platoi i pristupni putevi vjetroagregata izvesti će se na način da tlocrtni i vertikalni elementi budu prilagođeni zahtjevima montaže elemenata vjetroagregata, tehnologiji izvedbe same montaže (odabir prikladnog krana, upute za montažu u ovisnosti o tipu vjetroagregata) i dinamici rada (JIT-točno na vrijeme ili standardna montaža).

Prometna infrastruktura vjetroelektrane koristi se za kolni pristup do lokacije vjetroagregata, te kao infrastrukturni koridor za polaganje kabelske infrastrukture za priključak na elektroenergetsku i telekomunikacijsku mrežu.

2.3.3.3. Priključak na komunalnu infrastrukturu

Priklučak na vodovodnu i kanalizacijsku mrežu nije predviđen. U građevini (vjetroagregatima i trafo stanicama) nema stalne posade, tako da osoblje koje servisira uređaje boravi povremeno za vrijeme hitnih intervencija ili redovnog servisiranja. U tom slučaju voda se dovozi u bocama ili većim spremnicima.

2.3.4. Mjere sprječavanja nepovoljnih utjecaja na okoliš i prirodu

Projektiranjem i izborom najsuvremenije tehnologije osiguravaju se preventivne mjere zaštite okoliša kao što je smanjenje emisija buke, a rasporedom mikrolokacija stupova vjetroelektrane, na udaljenosti većoj od 200 metara, osigurava se sigurnost ostalih stupova od eventualnog rušenja jednog, te se izborom boje vjetroagregati prilagođavaju krajoliku.

2.3.4.1. Opće mjere zaštite tijekom građenja

Izvođač radova će koristiti tehnički ispravnu mehanizaciju, pridržavati se odobrene projektne dokumentacije te poštivati sve zakonske propise koji reguliraju konkretnu izgradnju.

Projektnom organizacijom gradilišta osigurat će se racionalno i učinkovito kretanje građevinske mehanizacije, privremenim skladištenjem materijala zauzeti površine bez vegetacije (goleti), sačuvati drveće gdje god je to moguće, koristiti postojeće putove, unaprijed odrediti privremena odlagališta materijala i otpada te površine za kretanje i parkiranje vozila, voditi računa o devastiranju što manjih površina i posebno o zaštiti prirodno vrijednih dijelova lokacije od posljedica građenja.
2.3.4.2. Prostorno planske mjere zaštite od buke
Mikrolokacije stupova vjetroagregata projektiraju se na dostatnoj udaljenosti od naselja i prometnica koja se nalaze u smjeru širenja buke.
Predviđa se korištenje najbolje dostupne tehnologije vjetroagregata s najmanjom emisijom buke i najboljim ostalim tehničkim karakteristikama, (Best Available Technology, BAT).

2.3.4.3. Projektna mjere zaštite od udara groma i požara
Na postrojenju je predviđen cjeloviti sustav zaštite od udara munja i pojave požara, koji će aktivnim i pasivnim mjerama osigurati da posljedice tih pojava budu što manje i što lakše savladive.

2.3.5. Mjere prema posebnim propisima

2.3.5.1. Mjere zaštite od požara

Mogućnost pristupa vatrogasnih vozila
Do vjetroelektrane VE Ljut pristupa se sa južne strane po planiranoj protupožarnoj prosjeci s elementima šumske ceste, širine oko 5 m s potrebnim proširenjima i krivinama, koja se od državne ceste D1 odvaja 1 km sjeverozapadno od zaseoka Otrić i nastavlja 4,5 km sjeverozapadno prema lokaciji. Interventne površine predviđene su na pristupnom putu uz vjetroagregate. Površine za intervenciju vatrogasnog vozila i tehnike imati će širinu od 5,5 m i nosivost od 150 kN.

Zaposjednutost prostora
U vjetroagregatu nema stalne posade, tako da osoblje koje servisira uređaje boravi povremeno za vrijeme hitnih intervencija ili redovnog servisiranja.

Požarno opterećenje
Požarno opterećenje nastaje od gorivih materijala od kojih je izgrađena građevina i od gorivih materijala koji se nalaze u njoj uslijed namjene.

Imobilno požarno opterećenje, budući da je građevina izgrađena uglavnom od negorivih materijala: čelik, lim, možemo pretpostaviti u iznosu manjem od 100 MJ/m² (od gorivih obloga i sl.). Mobilno požarno opterećenje građevine s obzirom na namjenu, prema statističkim podacima (TRVB 126), možemo procijeniti u sljedećim iznosima:

- Tehnički prostori – 200 MJ/m²

Ukupno požarno opterećenje građevine prema HRN-u UJ1.030. možemo pretpostaviti u iznosu do 1000 MJ/m², odnosno bit će u granicama niskog požarnog opterećenja.
Konačne vrijednosti će biti određene glavnim projektom i elaboratom zaštite od požara.

Mjere zaštite od požara predviđene u projektiranju građevine
Izborom najsvremenije raspoložive tehnologije smanjit će se emisija buke, a rasporedom mikrolokacija stupova vjetroelektrane, na udaljenosti većoj od 200 metara, onemogućeno je rušenje stupova vjetroagregata jedan na drugi u slučaju više sile (potresi i sl.).
U svakom od vjetroagregata postavit će se na ulaznom nivou, kod ulaznih vrata, po 1 ručni aparat za početno gašenje požara tipa S9, te 1 u prostoru gondole.
Na postrojenju je projektiran cjeloviti sustav zaštite od udara munja i pojave požara, koji će aktivnim i pasivnim mjerama osigurati da posljedice tih pojava budu što manje i što lakše savladive.

Elektroinstalacije

Sve elektroinstalacije isporučuju se kao dogotovljeni dio vjetroagregata.

Gromobranska zaštita koja štiti vjetroagregat od vrha lopatica do temelja isporučuje se kao dio agregata.

Uzemljenje vjetroagregata biti će definirano glavnim projektom

Građevinske karakteristike

Građevina je izvedena u čeliku, šuplji stup (prvi segment na temelju i završni pri gondoli konični, dok su srednja tri segmenta istog promjera), ravna je glatka ploha bez otvora, s ulaznim vratima pri dnu. Na vrhu stupa je gondola s ugrađenom opremom.

Na gondolu je pričvršćen rotor s lopaticama. Prilaz gondoli radi povremene kontrole osiguran je kroz stup penjalica s odmorištima – platformama. Zaštita od pada servisnog osoblja ostvarena je na način, da osoba koja se penje ima na sebi opremu za penjanje (sličnu alpinističkoj) kojom se veže na posmičnu vodilicu penjalica. Do povišenih ulaznih vrata u stup vode vanjske čelične stube s ogradom visine 120 cm.

Požarno odvajanje

Svaki od vjetroagregata bit će jedna požarna zona.

Evakuacija

Nije predviđena stalna posada na vjetroagregatima.

2.3.6. Analiza utjecaja buke na okoliš

Glavnim projektom će se provesti proračun širenja buke u okolišu za koju je izvor vjetroagregat te će se po puštanju u pogon provesti terenska mjerenja radi revizije računskog modela.

2.3.7. Faznost izgradnje građevine

Izgradnja VE Ljut snage do 300 MW, predviđena je u sedamnaest faza, uz planirano postavljanje do maksimalno pedeset vjetroagregata koji čine podfaze. Za svaku podfazu moguće je izdati zasebnu građevinsku i uporabnu dozvolu, gdje podfazu predstavlja vjetroagregat sa temeljem, plato, elektro i DTK kabel do trafostanice i pristupni put do vjetroagregata koji predstavlja funkcionalnu cjelinu na način da se istim može nesmetano pristupiti do agregata kompletnom prometnicom unutar pripadajuće faze.

Faze su određene na sljedeći način:

1. Faza 1. Vjetroagregati VA-1, VA-2 i VA-3 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
2. Faza 2. Vjetroagregati VA-4, VA-5 i VA-6 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
3. Faza 3. Vjetroagregati VA-7, VA-8 i VA-9 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
4. Faza 4. Vjetroagregati VA-10, VA-11 i VA-12 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
5. Faza 5. Vjetroagregati VA-13, VA-14 i VA-15 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
6. Faza 6. Vjetroagregati VA-16, VA-17 i VA-18 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
7. Faza 7. Vjetroagregati VA-19, VA-20 i VA-21 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
10. Faza 10. Vjetroagregati VA-28, VA-29 i VA-30 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
11. Faza 11. Vjetroagregati VA-31, VA-32 i VA-33 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
12. Faza 12. Vjetroagregati VA-34, VA-35 i VA-36 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
15. Faza 15. Vjetroagregati VA-43, VA-44 i VA-45 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata
17. Faza 17. Vjetroagregati VA-49 i VA-50 sa pripadajućim temeljima, platoima, elektro i DTK kabelima do trafostanice i pristupnim putevima do vjetroagregata

Uporabnu dozvolu moguće je izdati jednu za cijelu vjetroelektranu, a mogu se izdavati i zasebne uporabne dozvole za svaku pojedinu fazu ili podfazu.

Pregledne situacije na katastarskoj podlozi za vjetroagregate VA 1- VA14, VA15-VA33 i VA34 – VA50 dane su na sljedećim slikama.
Izgradnja vjetroelektrane Ljut
Slika 2.3-2 Pregledne situacije – novo stanje na katastarskoj podlozi VA 1- VA14, VA15-VA33 i VA34 – VA50 (Izvor: Idejno rješenje, ENCRO d.o.o., prosinac 2021.)
2.4. Popis vrsta i količina tvari koje ulaze u tehnološki proces, popis vrsta i količina tvari koje ostaju nakon tehnološkog procesa te emisija u okoliš

Planirani zahvat je izgradnja vjetroelektrane. Proizvodnja električne energije iz energije vjetra ekološki je prihvatljiv proces. Kod predmetnog zahvata nema „tehnološkog procesa” te bilo kakvih tvari koje bi se unosile u tehnološki proces i tvari koje bi nakon takvog procesa ostajale ili bi bile emitirane u okoliš.
3. PODACI O LOKACIJI I OPIS LOKACIJE ZAHVATA

3.1. Šire područje smještaja zahvata

Zahvat izgradnje vjetroelektrane Ljut nalazi se na području Zadarske županije, odnosno na području jedinice lokalne samouprave Općina Gračac (Slika 3.1-1).
3.2. Uže područje smještaja zahvata

Na promatranoj lokaciji (Slika 3.2-1.) investitor Poštak d.o.o. planira izgradnju vjetroelektrane Ljut ukupne snage do 300 MW koja se sastoji od pedeset vjetroagregata, na dijelu katastarskih općina k.o. Velika Popina, k.o. Grab i k.o. Glogovo, Općina Gračac, Zadarska županija.

Planirana vjetroelektrana nalazi se manje od 1 km od najbližih naselja. Okružuju je lokalne, državne i županijske ceste (Poglavlje Infrastruktura: Slika 3.14-1). Najbliža lokalna cesta nalazi se 1,2 km jugoistočno od obuhvata zahvata (L63037 Velika Popina (nerazvrstana cesta - Ž6009)), a na oko 1,2 km južno državna cesta D1 i željeznička pruga M604. Najbliži dalekovod je TS Gračac-TS Srb (D 35 kV) koji prolazi kroz krajnji istočni dio obuhvata zahvata.ugoistočno, uz samu granicu obuhvata zahvata smještena je postojeća VE Velika Popina, odnosno ZD6 i proširenje VE ZD6. Na sjeveru su planirane VE Kuk i VE Sedlo svaka po tri agregata, a na jugoistoku, neposredno uz granicu obuhvata VE Otrić s četiri vjetroagregata (Poglavlje Skupni (kumulativni utjecaji: Tablica 5.16-1).
3.3. Analiza usklađenosti zahvata s važećim dokumentima prostornog uređenja

Jedinica regionalne samouprave: Zadarska županija

Jedinice lokalne samouprave: Općina Gračac

Točan naziv zahvata: Izgradnja vjetroelektrane

Prema administrativno-teritorijalnoj podjeli Republike Hrvatske, zahvat vjetroelektrane nalazi se u Zadarskoj županiji na području Općine Gračac.

Područje prostornog obuhvata Zахvata regulirano je sljedećim dokumentima prostornog uređenja:

- **Prostorni plan Zadarske županije** („Službeni glasnik Zadarske županije“ br. 2/01, 6/04, 2/05, 17/06, 3/10, 15/14, 14/15)
- **Prostorni plan uređenja Općine Gračac** (Službeni glasnik Zadarske županije br. 13/07, 27/10, II. izmjene i dopune u tijeku (Odluka o izradi prostornog plana Službeni glasnik. Općine Gračac 2/15).

3.3.1. Prostorni plan Zadarske županije

Izvod iz Prostornog plana Zadarske županije („Službeni glasnik Zadarske županije“, broj 2/01, 6/04, 2/05, 17/06, 3/10, 15/14, 14/15)

ODREDBE ZA PROVOĐENJE

2. Uvjeti određivanja prostora građevina od važnosti za Državu i Županiju

2.2. Građevine od važnosti za Županiju

Članak 8.

Ovim planom određene su sljedeće građevine od važnosti za Županiju:

(...)

2.2.2. Energetske građevine

Elektroenergetske građevine (planirane):

vjetroelektrane snage manje od 20 MW u područjima predviđenima za obnovljive izvore energije

(...)

6. Uvjeti (funkcionalni, prostorni, ekološki) utvrđivanja prometnih i drugih infrastrukturnih sustava u prostoru

(...)

6.2. Energetski sustav

(...)

Članak 59.

Korištenjem obnovljivih izvora energije (vode, sunca, vjetra…), moguća je izgradnja:
Energetske građevine koje koriste obnovljive izvore energije

Članak 62.

Ovim Planom određena su područja za planiranu izgradnju vjetroelektrana na području Grada Paga, Grada Obrovca, Grada Benkovca, Općine Jasenice, Općine Gračac i Općine Lišane Ostrovičke kako je prikazano na kartografskom prikazu 2.3. Infrastrukturni sustavi – energetski sustavi.

Unutar planiranih područja lokacije vjetroelektrana odredit će se na temelju provedenih istražnih radova.

Smjernice za određivanje lokacija vjetroelektrana:

izvan zaštićenih i predloženih za zaštitu dijelova prirode
izvan planiranih građevinskih područja, infrastrukturnih koridora, visokih šuma i poljoprivrednog zemljišta
izvan zona izloženih vizurama vrijednog krajobraza, te s mora i glavnih prometnica
udaljenost vjetroagregata od granice građevinskog područja naselja je najmanje 1000 m, a iznimno može biti i manja, ali ne manja od 500 m ako se u postupku procjene utjecaja zahvata na okoliš utvrdi da zahvat nema značajniji negativni utjecaj na naselje
uskladiti smještaj vjetroagregata u odnosu na telekomunikacijske uređaje (radio i TVodašiljači, navigacijski uređaji) radi izbjegavanja elektromagnetskih smetnji
voditi računa o odabiru veličine i boje lopatica i stupa o mogućoj vizualnoj degradaciji prostora – izraditi za karakteristične lokacije kompjutorsku vizualizaciju radi ocjene utjecaja vjetroagregata na fizionomiju krajobraza

Planom je omogućeno povezivanje vjetroelektrana na postojeću i planiranu elektroenergetsku mrežu što će biti definirano kroz daljnju razradu svake pojedine lokacije.

Sukladno mogućnostima konfiguracije terena i koncepcije vjetroelektrane, dozvoljava se u okviru vjetrelektrane (vjetroparka) planiranje solarnih elektrana i ostalih pogona za korištenje sunčeve energije.

Članak 62 b.

Povezivanje, odnosno priključak planiranih obnovljivih izvora energije (vjetroelektrane, solarne elektrane) na elektroenergetsku mrežu, sastoji se od: pripadajuće trafostanice smještene u granicama obuhvata planirane vjetroelektrane/solarne elektrane i priključnog dalekovoda/kabela na postajeći ili planirani dalekovod ili na postojeću ili planiranu trafostanicu u dijelu elektroenergetskog sustava koji se nalazi u relativnoj blizini lokacije izgradnje vjetroelektrane/solarne elektrane.

Točno definiranje trase priključnog dalekovoda/kabela odredit će se projektnom dokumentacijom temeljem uvjeta nadležnog ovlaštenog elektroprivrednog poduzeća/tvrtke (operator prijenosnog sustava ili operator distribucijskog sustava).
Slika 3.3-1 Izvod iz kartografskog prikaza 1.1. Korištenje i namjena prostora Prostornog plana Zadarske županije ("Službeni glasnik Zadarske županije" br. 2/01, 6/04, 2/05, 17/06, 3/10, 15/14, 14/15.)
Slika 3.3-2 Izvod iz kartografskog prikaza 2.3. Infrastrukturni sustavi: Energetska sustav Prostornog plana Zadarske županije ("Službeni glasnik Zadarske županije" br. 2/01, 6/04, 2/05, 17/06, 3/10, 15/14, 14/15.)
3.3.2. Prostorni plan uređenja Općine Gračac

Izvod iz Prostornog plana uređenja Općine Gračac (Službeni glasnik Zadarske županije br. 13/07, 27/10, II. izmjene i dopune u tijeku (Odluka o izradi prostornog plana Službeni glasnik. Općine Gračac 2/15).

ODREDBE ZA PROVOĐENJE

(...)

Članak 8.

Ovim Planom na prostoru općine Gračac definirane su građevine od važnosti za Državu i Županiju, a funkcijom i kategorijom su označene u grafičkom dijelu i provedbenim odredbama Prostornog plana Zadarske županije.

(...)

Članak 10.

Infrastrukturne građevine od važnosti za Zadarsku županiju na području općine Gračac su:

(...)

Energetske građevine:

- energetski objekti koji koriste obnovljive izvore (vjetar, voda, sunce) (potencijalne)

(...)

Članak 11.

Tijekom planiranja i projektiranja građevina od važnosti za županiju moraju se poštivati važeći funkcionalno-prostorni i prostorno ekološki uvjeti na području županije, definirani PPŽ-om.

• elektroenergetske građevine:

(...)

vjetroelektrane snage veće od 20 MW u područjima predviđenima za obnovljive izvore energije - (planirane)

(...)

Obnovljivi izvori energije

Članak 116.

Planom se utvrđuju planirana i potencijalna područja za iskorištavanje energije vjetra, a na prostoru definiranom u Izvaku iz Županijskog plana Zadarske županije.

Članak 117.
Prije početka korištenja predviđenog prostora u smislu eksploatacije energije vjetra, obvezno je za isti izraditi Studiju utjecaja na okoliš. Studijom utjecaja na okoliš potrebno je dokazati mogućnost iskorištavanja energije vjetra bez narušavanja izvornih prirodnih vrijednosti. Također se mora utvrditi broj i razmještaj stupova sa vjetroturbinama u skladu sa standardima i obveznim minimalnim udaljenostima od građevinskih područja naselja i drugih sadržaja, zona zaštićene baštine, prometnih i infrastrukturnih objekata i sl.

Članak 118.

Planom se utvrđuju mjere zaštite prostora od negativnog utjecaja planirane izgradnje energetskog parka, a u smislu zaštite prometnica i ostale infrastrukture, očuvanje postojećih prirodnih, kulturnih i etnoloških vrijednosti i zaštite građevinskog područja naselja i drugih sadržaja prvenstveno od buke. U tom smislu se određuju minimalne udaljenosti stupova sa vjetroturbinama:

- od građevinskih područja naselja i drugih sadržaja – 300 m
- od prirodnih, kulturnih i etnoloških dobara – 300m
- od prometnica i infrastrukturnih objekata – 150 m
- od eksploatacijskih polja mineralnih sirovina – 500 m.

3.3.3. Zaključak

Predmetni zahvat je izgradnja vjetroelektrane. Prema kartografskom prikazu 1.1 Korištenje i namjena prostora, Prostornog plana Zadarske županije (Slika 3.3-1.) obuhvat VE Ljut smješten je na prostoru koji je označen kao ostalo poljoprivredno tlo, šume i šumsko zemljište, te u manjem dijelu obuhvata vijedno obrađivo tlo i šumsko zemljište. Same lokacije vjetroagregata i pristupnih puteva nalaze se na području određenom kao ostalo poljoprivredno tlo, šume i šumsko zemljište. Građevinska područja su izvan obuhvata VE Ljut.

Prema kartografskom prikazu 2. Infrastrukturni sustavi, Energetski sustavi zahvat se nalazi unutar obuhvata područja predviđenog za iskorištavanje energije vjetra (Slika 3.3.-2.).

U krugu od 500 m od pojedinog vjetroagregata nema:

- građevinskih područja naselja i drugih sadržaja
- prirodnih, kulturnih i etnoloških dobara
- prometnica i infrastrukturnih objekata
- eksploatacijskih polja mineralnih sirovina.
3.4. Pedološke značajke i poljoprivredno zemljište

Na području planiranog zahvata s obzirom na klimatske prilike, geološke značajke kao i ostale pedološke parametre stvorena su heterogena automorfna tla. Temeljem pedološke karte Republike Hrvatske, na području planirane vjetroelektrane klasificirano je sedam pedosistematskih jedinica:

- 24 – Kiselo smeđe na klastitima
- 35 – Rendzina na šljunku
- 56 – Smeđe tlo na vapnencu
- 58 – Smeđe tlo na vapnencu
- 59 – Lesivirano tlo na vapnencu i dolomitu
- 61 – Crnica vapnenačko-dolomitna
- 62 – Rendzina na vapnencu i dolomitu

Najveću površinu zauzima smeđe tlo na vapnencu i dolomitu, koji predstavlja tip tla koji se javlja uglavnom na tvrdim i čistim vapnencima i dolomitima, kisele je reakcije te pretežno dobre dreniranosti. Obzirom na nepovoljnu klimu, nagib terena i visok udio stjenovitosti ima vrlo niski proizvodni potencijal što potvrđuje i predmetni pokrov zemljišta koji čine šume, šikare i prirodni pašnjaci.

Slika 3.4-1 Prikaz pedosistematskih jedinica šireg područja planiranog zahvata (Izvor: Osnovna pedološka karta RH, M = 1:300.000)

Prema prostornim podacima Agencije za plaćanje u poljoprivredi, ribarstvu i ruralnom razvoju, na području planiranog zahvata evidentirano je ukupno 161 poljoprivredna parcela krških pašnjaka. U prilog tome idu i

Slika 3.4-2 Prikaz poljoprivrednih parcela evidentiranih unutar Arkod baze podataka šireg područja planiranog zahvata

3.5. Vodna tijela

3.5.1. Površinske vode

Stanje površinskih vodnih tijela, prema Uredbi o standardu kakvoće voda (NN 96/19), određuje se njegovim ekološkim i kemijskim stanjem, a ovisno o tome konačna ocjena ne može biti viša od najlošije stavke promatranja. Kakvoću strukture i funkcioniranje vodnih ekosustava uvrštavamo u ekološko stanje voda i ocjenjuje se na temelju relevantnih bioloških, fizikalno-kemijskih i hidromorfoloških elemenata kakvoće, a koje se pritom klasificiraju u pet klasa: vrlo dobro, dobro, umjereno, loše i vrlo loše. Time se i ukupna ocjena ekoloških elemenata kakvoće također klasificira u navedenih pet klasa ekološkoga stanja. Kemijsko stanje vodnog tijela površinske vode izražava prisutnost prioritetnih tvari i drugih mjerodavnih onečišćujućih tvari u površinskoj vodi, sedimentu i bioti. Prema koncentraciji pojedinih onečišćujućih tvari, površinske vode se klasificiraju u dvije klase: dobro stanje i nije dostignuto dobro stanje. Dobro kemijsko stanje odgovara uvjetima kad vodno tijelo postiže standarde kakvoće za sve prioritetne i druge mjerodavne onečišćujuće tvari. Temeljem ekološkog i kemijskog stanja vodnog tijela, ukupna se ocjena kakvoće promatranog tijela, također svrstava u pet klasa: vrlo dobro, dobro, umjeren, loše i vrlo loše.

Prema Pravilniku o granicama područja podslivova, malih slivova i sektora (NN 97/10, 31/13) promatrano područje nalazi se u području malog sliva „Zrmanja – Zadarsko primorje“.

Na širem području zahvata (buffer 5 km) nalazi se sedam površinskih vodnih tijela (Slika 3.5-1.). Njihovo stanje prikazano je u Tablica 3.5-1.
Tablica 3.5-1 Stanje priobalnih i prijelaznih vodnih tijela na širem području obuhvata (buffer 5 km)

<table>
<thead>
<tr>
<th>ŠIFRA</th>
<th>NAZIV</th>
<th>Procjena stanja</th>
<th>Ekološko</th>
<th>Kemijsko</th>
<th>Ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSRN0097_002</td>
<td>Srebrenica</td>
<td>vrlo dobro</td>
<td>dobro</td>
<td>vrlo dobro</td>
<td></td>
</tr>
<tr>
<td>CSRN0319_001</td>
<td>Grubišća jaruga</td>
<td>vrlo dobro</td>
<td>dobro</td>
<td>vrlo dobro</td>
<td></td>
</tr>
<tr>
<td>JKRRI0172_001</td>
<td>Otuča</td>
<td>dobrosklo dobro</td>
<td>dobrosklo dobro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSRN0206_001</td>
<td>Sredica</td>
<td>vrlo dobro</td>
<td>dobrosklo dobro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JKRNO29_001</td>
<td>Krivina draga</td>
<td>vrlo dobro</td>
<td>dobrosklo dobro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JKRNO215_001</td>
<td>Zmijska draga</td>
<td>vrlo loše</td>
<td>dobrosklo dobro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JKRRI033_005</td>
<td>Butižnica</td>
<td>vrlo dobro</td>
<td>dobrosklo dobro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Izrađivač: Oikon d.o.o., Podaci dobiveni na temelju Zahtjeva za pristup informacijama od strane Hrvatskih voda (Klasifikacijska oznaka: 008-02/20-02/0000648, Urudžbeni broj: 383-20-1, od 28. rujna 2020.)

Ekološko stanje vodnih tijela CSRN0097_002 Srebrenica, CSRN0206_001 Sredica, JKRNO29_003 Krivina draga i CSRN0319_001 Grubišća jaruga, JKRRI033_005 Butižnica i JKRRI0172_001 Prosjek je vrlo dobro, dok je ono vodnog tijela JKRNO288_001 Otuča dobro.

![Ekološko stanje površinskih vodnih tijela](image)

Slika 3.5-1). Vodno tijelo JKRNO215_001 Zmijska draga je u vrlo lošem stanju prvenstveno zbog fizikalno-kemijskih pokazatelja. Ukupno stanje navedenih vodnih tijela jednako je njihovom ekološkom stanju.
Kemijsko stanje svih vodnih tijela je dobro (Slika 3.5-2).

Slika 3.5-1: Ekološko stanje vodnih tijela šire okolice zahvata (Izrađivač: OIKON d.o.o. Podaci dobiveni na temelju Zahtjeva za pristup informacijama od strane Hrvatskih voda)
Slika 3.5-2 Kemijsko stanje vodnih tijela šire okolice zahvata (Izrađivač: OIKON d.o.o. Podaci dobiveni na temelju Zahtjeva za pristup informacijama od strane Hrvatskih voda)

Prema provedbenom planu obrane od poplava područje zahvata pripada Sektoru F – Južni Jadran, Branjeno područje 26: Područje malog sliva Zrmanja – Zadarsko primorje (Hrvatske vode, ožujak 2014.): „Ovo slivno područje ima sličnu specifičnu problematiku obrane od poplava na vodama prvog i drugog reda koja je prvenstveno karakterizirana velikim oscilacijama protoke unutar vodotoka kao i kratkoćom vremena propagacije poplavnih valova. Osim rijeke Zrmanje, tu se uglavnom radi o većim ili manjim bujičnim vodotocima, a na pojedinim lokacijama o kanalima za unutarnju odvodnju melioriranih ili nemelioriranih polja.“

U skladu s Odlukom o određivanju osjetljivih područja (NN 81/10 i 141/15), područje Zavhata nalazi se u jadranskom vodnom području. Pripada slivu osjetljivog područja te Području namjenjenom zahvaćanju vode za ljudsku potrošnju

3.5.2. Podzemne vode

Temeljem Pravilnika o granicama područja podsivova, malih slivova i sektora (NN 97/10, 13/13) promatrano područje nalazi se u području malog sliva „Zrmanja – Zadarsko primorje“, a pripada tijelima podzemne vode JKGN-07 Zrmanja i CSGI-18 Una (Slika 3.5-3).
Izgradnja vjetroelektrane Ljut

Slika 3.5-3 Položaj grupiranih tijela podzemne vode na širem području zahvata (Izrađivač: OIKON d.o.o. Podaci dobiveni na temelju Zahtjeva za pristup informacijama od strane Hrvatskih voda)

Stanje vodnih tijela podzemnih voda ocjenjuje se sa stajališta količina i kakvoće podzemnih voda te može biti dobro ili loše. Dobro stanje temelji se na zadovoljavanju uvjeta iz Okvirne direktive o vodama (ODV, 2000/600/EC) i Direktive o zaštiti podzemnih voda od onečišćenja i pogoršanja kakvoće (Direktiva o podzemnim vodama – DPV 2006/118/EC). Za ocjenu zadovoljenja tih uvjeta provode se klasifikacijski testovi. Ocjena kemijskog stanja vodnih tijela na području obuhvata prikazana je u tablici (Tablica 3.5-2), količinskog u tablici (Tablica 3.5-3), a ocjena ukupnog stanja u tablici (Tablica 3.5-4). U istoj tablici dan je i postotni udio korištene podzemne vode u odnosu na veličinu raspoloživih zaliha podzemnih voda.

Tablica 3.5-2 Ocjena kemijskog stanja vodnih tijela podzemne vode na širem području zahvata

<table>
<thead>
<tr>
<th>Kod TPV</th>
<th>Naziv TPV</th>
<th>Testovi se provode (DA/NE)</th>
<th>Test opće procjene kakvoće</th>
<th>Test zaslavljanje i druge intruzije</th>
<th>Test sanitarnih zaštite</th>
<th>Test površinske vode</th>
<th>Test EOPV</th>
<th>Ukupna ocjena stanja</th>
</tr>
</thead>
<tbody>
<tr>
<td>JKGN-07</td>
<td>Zrmanja</td>
<td>DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Stanje</td>
<td>Pouzdanost</td>
<td>Stanje</td>
<td>Pouzdanost</td>
<td>Stanje</td>
<td>Pouzdanost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>dobrog</td>
<td>niška</td>
<td>dobrog</td>
<td>niška</td>
<td>dobrog</td>
<td>niška</td>
</tr>
</tbody>
</table>

34
Izgradnja vjetroelektrane Ljut

Tablica 3.5-3 Ocjena količinskog stanja vodnih tijela podzemne vode na promatranom području

<table>
<thead>
<tr>
<th>Kod TPV</th>
<th>Naziv TPV</th>
<th>Povezanost površinskih i podzemnih voda</th>
<th>Ekosustavi ovisni o podzemnim vodama</th>
<th>Test vodne bilance</th>
<th>Zaslanjenje i druge intruzije</th>
<th>Količinsko stanje - ukupno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stanje</td>
<td>Pouzdanost</td>
<td>Stanje</td>
<td>Pouzdanost</td>
<td>Stanje</td>
</tr>
<tr>
<td>JKGN-07</td>
<td>Zrmanja</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSGI-18</td>
<td>Una</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablica 3.5-4 Procjena ukupnog stanja vodnih tijela podzemne vode te obnovljive i zahvaćene količine podzemnih voda na širem području zahvata

<table>
<thead>
<tr>
<th>Kod TPV</th>
<th>Naziv TPV</th>
<th>Zahvaćene količine (m³/god)</th>
<th>Poroznost</th>
<th>Obnovljive zalihe podzemnih voda (m³/god)</th>
<th>Zahvaćene količine kao postotak obnovljivih zaliha (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JKGN-07</td>
<td>Zrmanja</td>
<td>19,3*10⁶</td>
<td>Kavernozno pukotinska</td>
<td>1.68*10⁹</td>
<td>1.15</td>
</tr>
<tr>
<td>CSGI-18</td>
<td>Una</td>
<td>1,17*10⁶</td>
<td>Kavernozno pukotinska</td>
<td>1,59*10⁹</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Kemijsko, količinsko i ukupno stanje tijela podzemne vode JKGN-07 Zrmanja i CSGI-18 Una ocijenjeno je kao dobro.

3.5.3. Zone sanitarne zaštite

Način utvrđivanja zona sanitarne zaštite, obvezne mjere i ograničenja koja se u njima provode, rakovi za donošenje odluka o zaštiti i postupak donošenja tih odluka uređeni su Pravilnikom o uvjetima za utvrđivanje zona sanitarne zaštite izvorišta (NN 66/11, 47/13). Unutar zona sanitarne zaštite propisuju se mjere pasivne zaštite koje uključuju ograničenja i/ili zabrane obavljanja nekih djelatnosti i mjere aktivne zaštite u koje se ubraja monitoring kakvoće voda na prijevnom području izvorišta i poduzimanje aktivnosti
za poboljšanje stanja voda, a osobito: gradnja vodnih građevina za javnu vodoopskrbu i odvodnju otpadnih voda, uvođenje čistih proizvodnji, izgradnju spremišnih kapaciteta za stajsko gnojivo, organiziranje ekološke poljoprivredne proizvodnje, ugradnja spremnika opasnih i onečišćujućih tvari s dodatnom višestrukom zaštitom i druge mjere koje poboljšavaju stanje voda. Kako bi se izvorišta koja se koriste ili su rezervirana za javnu vodoopskrbu zaštitila od onečišćenja te od drugih nepovoljnih utjecaja, uspostavljaju se i održavaju vodozaštitne zone (zone sanitarne zaštite) u skladu s Odlukom o zaštiti izvorišta.

Pravilnikom o uvjetima za utvrđivanje zona sanitarne zaštite izvorišta (NN 66/11, 47/13), zone sanitarne zaštite izvorišta sa zahvaćanjem voda iz vodonosnika s pukotinskom i pukotinsko-kavernoznom poroznosti određene su: zona ograničenja – IV. zona, zona ograničenja i nadzora – III. zona, zona strogog ograničenja i nadzora – II. zona i zona strogog režima zaštite i nadzora – I. zona.

Na području predmetnog zahvata ne nalaze se zone sanitarne zaštite. Zahahtu je najbliža III. zona sanitarne zaštite izvorišta Boljkovac, Bokanjac, Golubinka, Jezerce, Oko, odnosno IV. zona sanitarne zaštite izvorišta Mrđenovac i Kraljeve i Bukovec koje se sve nalaze na udaljenosti od preko 30 km.

![Zone sanitarne zaštite izvorišta](image)

Slika 3.5-4 Položaj zahvata u odnosu na zone sanitarne zaštite izvorišta (Izrađivač: OIKON d.o.o. Podaci dobiveni na temelju Zahtjeva za pristup informacijama od strane Hrvatskih voda)

3.5.4. Opasnost i rizik od pojave poplava

Karte opasnosti od poplava izrađene su za sva područja gdje postoje ili bi se vjerojatno mogli pojaviti potencijalno značajni rizici od poplava, odnosno za sva područja koja su, u fazi preliminarne procjene,
izgradnja vjetroelektrane Ljut identificirana kao područja s potencijalno značajnim rizicima od poplava. Analiza opasnosti od poplava obuhvaća tri scenarija plavljenja:

- velike vjerojatnosti (VV) pojavljivanja;
- srednje vjerojatnosti (SV) pojavljivanja (povratno razdoblje 100 godina);
- male vjerojatnosti (MV) pojavljivanja uključujući akcidentne poplave uzrokovane rušenjem nasipa na većim vodotocima ili rušenjem visokih brana (umjetne poplave).

Državnim planom obrane od poplava (NN 84/10) kojeg donosi Vlada RH i Glavnim provedbenim planom obrane od poplava kojeg donose Hrvatske vode, područje zahvata pripada Sektoru F – Južni Jadran, Branjeno područje 26: Područje malog sliva Zrmanja – Zadarsko primorje.

Na samom području predmetnog zahvata ne postoji vjerojatnost od pojavljivanja poplava. Prva velika vjerojatnost od pojavljivanja poplava nalazi se oko 10 km jugozapadno na području vodnog tijela JKRN0044_001 Žižinka (Slika 3.5-5).

Slika 3.5-5 Karta opasnosti od poplava na području obuhvata (Izrađivač: OIKON d.o.o. Podaci dobiveni na temelju Zahtjeva za pristup informacijama od strane Hrvatskih voda)

3.6. Bioraznolikost

3.6.1. Staništa i flora

Fitogeografski gledano, obuhvat zahvata se nalazi u zoni ilirske provincije u eurosibirsko-sjevernoameričke regije, čiju klimazonalnu šumsku zajednicu čini asocijacija Querco-Carpinetum illyricum (šuma hrasta
Izgradnja vjetroelektrane Ljutkitnjaka i običnog graba) (Vukelić 2012.). Šire područje zahvata zahvaća dijelove submediteranske zone mediteranske regije te alpsko-visokonordijske regije.

Prema Karti prirodnih i poluprirodnih nešumskih kopnjenih i slatkovodnih staništa Republike Hrvatske (Bardi i sur. 2016.) te Karti staništa Republike Hrvatske (Antonić i sur. 2005; korištena za šumska staništa), u široj zoni utječaja zahvata površinom najzastupljeniji tipovi staništa su Istočnojadranski kamenjarski pašnjaci epimediteranske zone (NKS kod C.3.5.2.), i šume među kojima nalazimo Mezofilne i neutrofilne čiste bukove šume (NKS kod E.4.5.), Jugoistočnoalpsko-ilariske, termofilne bukove šume (NKS kod E.4.6.), Šume običnog i crnog bora (NKS kod E.7.4) i Nasadi četinjača (NKS kod E.9.2.). Navedeni stanišni tipovi prikazani su u tablici (Tablica 3.6-1) i slikom (Slika 3.6-1).

Rijetki i ugroženi stanišni tipovi

Prema Karti kopnjenih nešumskih staništa Republike Hrvatske 2016 (Bardi i sur. 2016.) na prostoru planiranog zahvata nalaze se i staništa koja se smatraju ugroženima i rijetkim prema Pravilniku o popisu stanišnih tipova i karti staništa (NN 27/21) te su istaknuta masnim slovima u tablici (Tablica 3.6-1). Kategoriji rijetkih i ugroženih stanišnih tipova staništa pripadaju Alpsko-karpatsko-balkanske vapnenačke stijene (NKS kod B.1.3.), Mezofilne livade košanice Srednje Europe (NKS kod C.2.3.2.) i Srednjoeuropske livade rane pahovke (NKS kod C.2.3.2.1.), Brdske livade uspravnog ovsika na karbonatnoj podlozi (NKS kod C.3.3.1.), Istočnojadranski kamenjarski pašnjaci epimediteranske zone (NKS kod C.3.5.2.), Travnjaci vlasastog zmijka (NKS kod C.3.5.3.) i Šume (NKS kod E 4.5., 4.6. i 7.4.).

Alpsko-karpatsko-balkanske vapnenačke stijene (NKS kod B.1.3.) (Red Potentillitalia caulescentis Br.-Bl. 1926) pripadaju razredu Asplenietea trichomanis (Br.-Bl. et Maire 1934) Oberd. 1977. To je skup hazmofitskih zajednica biljaka stjenjača razvijenih u pukotinama karbonatnih stijena pretplaninskog i planinskog, rjeđe brdskog i gorskog vegetacijskog pojasa (Nikolić 2021.).

Mezofilne livade košanice Srednje Europe (NKS kod C.2.3.2.) (Sveza Arrhenatherion elatioris Br.-Bl. 1926, syn. *Arrhenatherion elatioris Luquet 1926) – Zajednica predstavlja mezofilne livade košanice Srednje Europe rasprostranjene od nizinskog do gorskog pojasa. u Hrvatskoj je poznata, osim tipične, još i kao livade košanica Srednje Europe rasprostranjene od nizinskog do gorskog pojasa.

Srednjoeuropske livade rane pahovke (NS kod C.2.3.2.1.) (As. Arrhenatheretum elatioris Br.-Bl. ex Scherrer 1925) – Zajednica predstavlja najvažniju livadu košanice atlantskog dijela Srednje Europe. U Hrvatskoj postiže svoju istočnu granicu. Razvija se, u pravilu, izvan dohvata poplavnih voda. U florističkom sastavu ističu se Arrhenatherum elatius, Trisetum flavescens, Crepis biennis, Tragopogon pratensis, Knautia pratensis, Heracleum sphondyllum i niz drugih. Jedna je od floristički najbogatijih livadnih zajednica. U Hrvatskoj je poznata, osim tipične, još i kao livade košanice Srednje Europe rasprostranjene od nizinskog do gorskog pojasa.

Brdske livade uspravnog ovsika na karbonatnoj podlozi (NKS kod C.3.3.1.) (Sveza Bromion erecti W. Koch 1926) su mezofilne zajednice nastale u procesima antropogene degradacije u kojima dominiraju višegodišnje busenaste trave. Pretežito služe i kao livade košanice i kao pašnjaci, a značajne su za subatlantske dijelove Europe u klimatskom smislu. Naseljavaju plica ili dublja, smeda karbonatna tla, obično na padinama većega nagiba, nepogodnim za poljoprivrednu obradu (Nikolić 2021.).

Istočnojadranski kamenjarski pašnjaci epimediteranske zone (NKS kod C.3.5.2.) pripadaju istočnojadranski kamenjarski pašnjaci epimediteranske vegetacijske zone mediteransko-montanog vegetacijskog pojas (Sveza Saturejon subspicatae H-ić. 1975) (Nikolić 2021.).

Travnjaci vlasastog zmijka (NKS kod C.3.5.3.) (Sveza Scorzonerion villosae H-ić. 1949) razvijaju se na razmjeru dubokim, međem, primorskim tlima i u pravilu na površini bez kamena. Zbog toga su takve...
površine bile pogodne za kosidbu i koristile su se kao livade košanice, ali i kao pašnjak. Razvijaju se i u mediteransko-litoralnom i u mediteransko-montanom vegetacijskom pojasu (Nikolić 2021.).

Tablica 3.6-1 Stanišni tipovi na području obuhvata zahvata.

<table>
<thead>
<tr>
<th>NKS kod</th>
<th>Stanišni tipovi - NKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.3.</td>
<td>Alpso-karpatsko-balkanske vapnenačke stijene</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>Ilirsko-jadranska, primorska točila</td>
</tr>
<tr>
<td>C.2.3.2</td>
<td>Mezofilne livade košanice Srednje Europe</td>
</tr>
<tr>
<td>C.2.3.2.1</td>
<td>Srednjejoeuropske livade rane pahovke</td>
</tr>
<tr>
<td>C.3.3.1</td>
<td>Brdske livade uspravnog oviska na carbonatnoj podlozi</td>
</tr>
<tr>
<td>C.3.5.2</td>
<td>Istočnojadranski kamenjarski pašnjaci epimeditersanske zone</td>
</tr>
<tr>
<td>C.3.5.3</td>
<td>Travnjaci vlasastog zmijka</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>Mezofilne živice i šikare kontinentalnih, izuzetno primorskih krajeva</td>
</tr>
<tr>
<td>E.4.5</td>
<td>Mezofilne i neutrofilne čiste bukove šume</td>
</tr>
<tr>
<td>E.4.6</td>
<td>Jugoistočnoalpsko-ilirske, termofilne bukove šume</td>
</tr>
<tr>
<td>E.7.4</td>
<td>Šume običnog i crnog bora</td>
</tr>
<tr>
<td>E.9.2</td>
<td>Nasadi četinjača</td>
</tr>
<tr>
<td>I.5.1</td>
<td>Voćnjaci</td>
</tr>
<tr>
<td>J.</td>
<td>Izgrađena i industrijska staništa</td>
</tr>
</tbody>
</table>

Podaci za staništa sakupljeni su projektom Kartiranje prirodnih i do-prirodnih nešumskih staništa Republike Hrvatske (Bardi i sur. 2016.). Poligoni su iscrtani prostornom delineacijom i za svaki poligon procijenjena je kategorija (ili kategorije) staništa, tj. dodijeljen je NKS kod. Udio staništa u poligonu, ovisno o pojedinom poligonu, varira je od kategorije jednog staništa jedno stanište dominantno na području poligona), preko dvije kategorije staništa (dva su staništa u različitim omjerima zastupljena u poligonu), do tri kategorije (tri staništa u različitim omjerima zastupljena u poligonu), tj. korišteni su mozaici staništa:

A) Jedan NKS kod u poligonu = jedno stanište

a. Stanište zauzima >85 % površine poligona (ostala staništa zauzimaju <15 %)

B) Dva NKS koda u poligonu= mozaik staništa

a. Dominantno stanište zauzima u mozaiku >15 % površine poligona i nojprezentativnije je (zauzima više površine od svih ostalih staništa)
b. Sekundarno stanište zauzima >15% površine poligona i zauzima manju površinu od dominantnog staništa. Ostala staništa (ako su prisutna) zauzimaju <15%.

C) Tri NKS koda u mozaiku:

a. Dominantno stanište zauzima u mozaiku >15% površine poligona i najreprezentativnije je (zauzima više površine od svih ostalih staništa)
b. Sekundarno stanište zauzima >15% površine poligona i zauzima manju površinu od dominantnog staništa
c. Tercijarno stanište zauzima >15% površine poligona i zauzima manju površinu od dominantnog i sekundarnog staništa. Ostala staništa (ako su prisutna) zauzimaju <15%.

Da bi stanište bilo određeno, moralo je zauzimati minimalno 15% površine poligona. Ako je neko stanište bilo zastupljeno s manje od 15% površine poligona, njemu nije dodijeljena kategorija staništa (NKS kod). Kod takvih poligona (koji su imali 15% površine s nedodijeljenim NKS kodom) ostale kategorije staništa zbrajene su zauzimale do 85% površine poligona. U poligonom s dvije ili tri kategorije prva je navedena stanište s većim udjelom površine, a zatim staništa s manjim udjelom površine. Premda je teoretski moguće da u jednom poligonu bude 6 stanišnih tipova ovačka situacija je praktično iznimna rijetka te se na velikoj većini kartiranih površina očekuje da je prisutno najviše 3 stanišna tipa te su s tim pretpostavkom i računate potencijalne površine (minimalne i maksimalne) pojedinog stanišnog tipa u pojedinim jedinicama kartiranja poligona.

Masnim slovima označeni su rijetki i ugroženi stanišni tipovi prema Prilogu II Pravilnika o popisu stanišnih tipova, karti staništa te ugroženim i rijetkim stanišnim tipovima (NN 88/14).
Tablica 3.6-2 Popis strogo zaštićene flore u okolici planiranog zahvata s navedenim statusom ugroženosti i endemičnosti

<table>
<thead>
<tr>
<th>Znanstveni naziv vrste</th>
<th>Hrvatski naziv vrste</th>
<th>Status ugroženosti</th>
<th>Endemičnost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achillea virescens</td>
<td>zelenkasti stolisluk</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Arenaria gracilis</td>
<td>jježna pjeskarica</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Athamanta turbith</td>
<td>hrvatska nevesika</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Campanula waldsteiniana</td>
<td>Waldsteinov zvončić</td>
<td>NT</td>
<td>DA</td>
</tr>
<tr>
<td>Carex serotina</td>
<td>crni šaš</td>
<td>EN</td>
<td>NE</td>
</tr>
<tr>
<td>Dianthus velebiticus</td>
<td>velebitski klinčić</td>
<td>NT</td>
<td>DA</td>
</tr>
<tr>
<td>Eriophorum latifolium</td>
<td>širokolišna suhoperka</td>
<td>EN</td>
<td>NE</td>
</tr>
<tr>
<td>Euphrasia illyrica</td>
<td>ilirska očanica</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Festuca illyrica Markgr.-Dann.</td>
<td>-</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Genista sylvestris</td>
<td>dalmatinska žutilovka</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Knautia travnicensis</td>
<td>travnička prženica</td>
<td>DD</td>
<td>DA</td>
</tr>
<tr>
<td>Knautia velebitica</td>
<td>velebitska prženica</td>
<td>DD</td>
<td>DA</td>
</tr>
<tr>
<td>Lilium martagon</td>
<td>zlatni jiljan</td>
<td>VU</td>
<td>NE</td>
</tr>
<tr>
<td>Orchis morio</td>
<td>mali kaćun</td>
<td>NT</td>
<td>NE</td>
</tr>
<tr>
<td>Polygala alpestris</td>
<td>hrvatski krestušac</td>
<td>DD</td>
<td>DA</td>
</tr>
<tr>
<td>Seseli montanum L. ssp. tommasinii</td>
<td>Tomasinijevo devesilje</td>
<td>/</td>
<td>DA</td>
</tr>
<tr>
<td>Silene reichenbachii</td>
<td>Reichenbachova pušina</td>
<td>x</td>
<td>DA</td>
</tr>
<tr>
<td>Silene velebitica</td>
<td>velebitska pušina</td>
<td>/</td>
<td>DA</td>
</tr>
</tbody>
</table>

Oznake statusa ugroženosti - IUCN kategorije: CR - kritično ugrađena, EN - ugrožena svojta, VU - ranjiva svojta, NT - gotovo ugrožena svojta, LC - najmanje zabrinjavajuća svojta, DD - nedovoljno podataka za procjenu ugroženosti, /-nije definiran status prema Pravilniku o strogo zaštićenim vrstama (NN 144/13, 73/16).

Podzemna staništa

Obuhvat planiranog zahvata vjetroelektrane nalazi se na krškom području bogate georaznolikosti. Kopnena kraška špiljska staništa (NKS kod H.1.1.) se nalaze u Prilogu II i III Pravilnika o popisu stanišnih tipova i karti staništa (NN 27/21), odnosno na „Popisu prirodnih stanišnih tipova od interesa za Europsku uniju zastupljenih na području Hrvatske“ i „Popisu ugroženih i/ili rijetkih stanišnih tipova od nacionalnog i europskog značaja zastupljenih na području Republike Hrvatske“. U špiljama se obično nalaze specijalizirane životinske vrste (troglobiti) i mogu uključivati endemske špiljske vrste koje žive isključivo u određenim špiljskim sustavima.

Prema Katastru speleoloških objekata Republike Hrvatske na širem području (5 km od granice obuhvata zahvata) nalazi se 15 speleoloških objekata (Error! Reference source not found.). Podaci prema Katastru speleoloških objekata RH javno su dostupni u obliku smanjenog sadržajnog opsega i prostorne preciznosti (u okviru Bioportala) pa su udaljenosti u navedenoj tablici izračunate s udaljenosti od granice kvadranta pojedinog speleološkog objekta. U analizu ujednačeni su samo oni koji se nalaze unutar obuhvata zahvata kao i oni najbliži koji se od obuhvata planiranog zahvata nalaze na udaljenosti manjoj od 1,5 km.
Jedanaest speleoloških objekta nalazi se unutar obuhvata zahvata.

Tablica 3.6-3 Pregled speleoloških objekata na širem području utjecaja zahvata (radijus 5 km od granice obuhvata zahvata)

<table>
<thead>
<tr>
<th>Naziv speleološkog objekta</th>
<th>Vrsta speleološkog objekta</th>
<th>Uključeno/isklujučeno u analizu utjecaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR00279 Brkljačeva pećina</td>
<td>špilja</td>
<td>Uključeno Unutar granica zahvata</td>
</tr>
<tr>
<td>HR00295 Brkljačeva pećina 2</td>
<td>špilja</td>
<td>Uključeno Unutar granica zahvata</td>
</tr>
<tr>
<td>HR02045 Ilijina jama</td>
<td>jama</td>
<td>Uključeno Unutar granica zahvata</td>
</tr>
<tr>
<td>HR02063 Jama kraj točka</td>
<td>jama</td>
<td>Uključeno Unutar granica zahvata</td>
</tr>
<tr>
<td>HR00522 Materina jama</td>
<td>jama</td>
<td>Uključeno Unutar granica zahvata</td>
</tr>
<tr>
<td>HR03339 Jama u Kamari</td>
<td>jama</td>
<td>Uključeno Unutar granica zahvata</td>
</tr>
</tbody>
</table>
Izgradnja vjetroelektrane Ljut

HR00523
Pišteljak 1
jama
Uključeno
Unutar granica zahvata

HR01727
Okrugla Pajina jama
jama
Uključeno
Unutar granica zahvata

HR02817
Čupakabra
jama
Uključeno
Unutar granica zahvata

HR03275
Jama u Trbojevićima
jama
Uključeno
Uz zapadnu granicu zahvata

HR02803
Škarinka
jama
Uključeno
Uz zapadnu granicu zahvata

HR00530
Sjevernjača
jama
Uključeno
Oko 1 km od sjeverozapadno od granice zahvata

HR02065
Troroga
jama
Uključeno
Oko 1 km od sjeveroistočne granice zahvata

HR02781
Špilja uz cestu
špilja
Uključeno
Oko 1,2 km od sjeverozapadno od granice zahvata

HR02878
Aničin ponor
špilja
Uključeno
Oko 1,2 km od sjeverozapadno od granice zahvata

3.6.2. Fauna

Fauna koja se nalazi na širem području planiranog zahvata (radijus od 5 km) zoogeografski pripada ličkom dijelu krške krajine (južnoeuropskog) gorskog pojasa europskog potpodručja palearktičke regije. Popis ugrožene i strogo zaštićene faune na širem području zahvata prikazan je u Tablici 3.6-4.

Navedene su vrste, prema dostupnim podacima i literaturi, rasprostranjene na širem području zahvata, a s obzirom na prisutna staništa su i potencijalno rasprostranjene na području utjecaja zahvata.

Tablica 3.6-4 Popis ugrožene i strogo zaštićene faune na širem području zahvata (radijus 5 km od granice zahvata)

<table>
<thead>
<tr>
<th>Skupina</th>
<th>Znanstveni naziv vrste</th>
<th>Hrvatski naziv vrste</th>
<th>Status zaštite</th>
<th>Status ugroženosti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leptiri (Lepidoptera)</td>
<td>Euphydryas aurinia</td>
<td>močvarna riđa</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Papilio machaon</td>
<td>obični lastin rep</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Parnassius mnemosyne</td>
<td>crni apolon</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Phengaris alcon rebeli</td>
<td>gorski plavac</td>
<td>SZ</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td>Proteus atra dalmata</td>
<td>dalmatinski okaš</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Zerynthia polyxena</td>
<td>uskršnji leptir</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td>Puževi (Gastropoda)</td>
<td>Zospeum likanum</td>
<td>lički špiljaš</td>
<td>SZ</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td>Zospeum pretneri</td>
<td>tupi špiljaš</td>
<td>SZ</td>
<td>EN</td>
</tr>
<tr>
<td>Vodozemci (Amphibia)</td>
<td>Bombina variegata</td>
<td>žuti mukač</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Hyla arborea</td>
<td>gatalinka</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Proteus anguinus</td>
<td>čovječja ribica</td>
<td>SZ</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td>Triturus carnifex</td>
<td>veliki vodenjak</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td>Skupina</td>
<td>Znanstveni naziv vrste</td>
<td>Hrvatski naziv vrste</td>
<td>Status zaštite</td>
<td>Status ugroženosti</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Gmazovi (Reptilia)</td>
<td>Coronella austriaca</td>
<td>smukulja</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Iberolacerta horvathi</td>
<td>velebitka gušterica</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Lacerta agilis</td>
<td>livadna gušterica</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Lacerta viridis</td>
<td>zelembač</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Podarcis melisellensis</td>
<td>krška gušterica</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Podarcis muralis</td>
<td>zidna gušterica</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Vipera ammodytes</td>
<td>poskok</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Vipera ursinii</td>
<td>planinski žutokrug</td>
<td>SZ</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td>Zamenis longissimus</td>
<td>bjelica</td>
<td>SZ</td>
<td>LC</td>
</tr>
<tr>
<td></td>
<td>Accipiter nisus</td>
<td>kobac</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Anthus campestris</td>
<td>primorska trepetljka</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Anthus pratensis</td>
<td>livadna trepetljka</td>
<td>SZ</td>
<td>LC (p, z)</td>
</tr>
<tr>
<td></td>
<td>Anthus trivialis</td>
<td>prugasta trepetljka</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Aquila chrysaetos</td>
<td>suri orao</td>
<td>SZ</td>
<td>CR (g)</td>
</tr>
<tr>
<td></td>
<td>Asio otus</td>
<td>mala ušara</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Athene noctua</td>
<td>sivi ćuk</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Bubo bubo</td>
<td>ušara</td>
<td>SZ</td>
<td>NT (g)</td>
</tr>
<tr>
<td></td>
<td>Buteo buteo</td>
<td>škanjac</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Caprimulgus europaeus</td>
<td>leganj</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Carduelis carduelis</td>
<td>češljugar</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Carduelis chloris</td>
<td>zelendur</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Certhia brachydyactyla</td>
<td>dugokljuni puzavac</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Circaetus galicus</td>
<td>zmijar</td>
<td>SZ</td>
<td>EN (g)</td>
</tr>
<tr>
<td></td>
<td>Coccothraustes coccothraustes</td>
<td>batokljun</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Delichon urbicum</td>
<td>piljak</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Dendrocopos major</td>
<td>veliki djetlić</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Emberiza citrinella</td>
<td>žuta strnadica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Eremophila alpestris</td>
<td>planinska ševa</td>
<td>SZ</td>
<td>CR (g)</td>
</tr>
<tr>
<td></td>
<td>Erithacus rubecula</td>
<td>crvendać</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Falco tinnunculus</td>
<td>vjetruša</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Falco peregrinus</td>
<td>sivi sokol</td>
<td>SZ</td>
<td>VU (g)</td>
</tr>
<tr>
<td></td>
<td>Falco subbuteo</td>
<td>sokol lastivičar</td>
<td>SZ</td>
<td>NT (g)</td>
</tr>
<tr>
<td></td>
<td>Hirundo rustica</td>
<td>lastavica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Jynx torquilla</td>
<td>vijoglav</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Luscinia megarhynchos</td>
<td>slavuj</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Monticola saxatilis</td>
<td>kamenjar</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Monticola solitarius</td>
<td>modrokos</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Motacilla alba</td>
<td>bijela pastirica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Oenanthe oenanthe</td>
<td>sivkasta bjeloguza</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Oriolus oriolus</td>
<td>vuga</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Otus scops</td>
<td>ćuk</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Parus caeruleus</td>
<td>plavetna sjenica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Parus cyanus</td>
<td>bijela sjenica</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Parus lugubris</td>
<td>mrka sjenica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Parus major</td>
<td>velika sjenica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Parus palustris</td>
<td>crnoglava sjenica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Pernis apivorus</td>
<td>škanjac osaš</td>
<td>SZ</td>
<td>NT (g)</td>
</tr>
<tr>
<td>Skupina</td>
<td>Znanstveni naziv vrste</td>
<td>Hrvatski naziv vrste</td>
<td>Status zaštite</td>
<td>Status ugroženosti</td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Sisavci</td>
<td>Phylloscopus collybita</td>
<td>zviždak</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Phylloscopus sibilatrix</td>
<td>šumski zviždak</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Picus viridis</td>
<td>zelena žuna</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Sitta europaea</td>
<td>breglež</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Sylvia atricapilla</td>
<td>crnokapa grmuša</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Sylvia communis</td>
<td>grmuša pjenica</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Sylvia curruca</td>
<td>grmuša červljinčka</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Sylvia nisoria</td>
<td>pjegava grmuša</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Tyto alba</td>
<td>kukuvija</td>
<td>SZ</td>
<td>NT (g)</td>
</tr>
<tr>
<td></td>
<td>Upupa epops</td>
<td>pupavac</td>
<td>SZ</td>
<td>LC (g)</td>
</tr>
<tr>
<td></td>
<td>Barbastella barbastellus</td>
<td>širokouhi mračnjak</td>
<td>SZ</td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td>Canis lupus</td>
<td>vuk</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Dinaromys bogdanovi</td>
<td>dinarski voluhar</td>
<td>SZ</td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td>Lynx lynx</td>
<td>ris</td>
<td>SZ</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>Miniopterus schreibersii</td>
<td>dugokrili pršnjak</td>
<td>SZ</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td>Muscardinus avellanarius</td>
<td>puh orašar</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Myotis bechsteinii</td>
<td>velikouhi šišmiš</td>
<td>SZ</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td>Myotis blythii</td>
<td>oštrouhi šišmiš</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Myotis capaccinii</td>
<td>dugonogi šišmiš</td>
<td>SZ</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td>Myotis emarginatus</td>
<td>ridi šišmiš</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Myotis myotis</td>
<td>veliki šišmiš</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Nyctalus leisleri</td>
<td>mali večernjak</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Plecotus macrobularis</td>
<td>gorski dugoušan</td>
<td>SZ</td>
<td>DD</td>
</tr>
<tr>
<td></td>
<td>Rhinolophus blasii</td>
<td>Blazijev potkovnjak</td>
<td>SZ</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td>Rhinolophus euryale</td>
<td>južni potkovnjak</td>
<td>SZ</td>
<td>VU</td>
</tr>
<tr>
<td></td>
<td>Rhinolophus ferrumequinum</td>
<td>veliki potkovnjak</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Rhinolophus hipposideros</td>
<td>mali potkovnjak</td>
<td>SZ</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Rupicapra rupicapra</td>
<td>balkanska divokoza</td>
<td>SZ</td>
<td>NT</td>
</tr>
<tr>
<td></td>
<td>Ursus arctos</td>
<td>smđeni medvjed</td>
<td>SZ</td>
<td>/</td>
</tr>
</tbody>
</table>

Od zabilježenih vrsta strogo zaštićenih i ugrožene faune beskralješnjaka prevladavaju puževi (Gastropoda) i kukci (Insecta). Od kukaca je dominantan red leptira (Lepidoptera). Prema Pravilniku o strogom zaštićenim vrstama (NN 144/13, 73/16) i Crvenoj knjizi lepčeta (Šašić i sur. 2015.) ovo je područje potencijalno rasprostranjenosti strogo zaštićenih vrsta lepčeta: močvarna riđa, obični lastin rep, crni apolon, Gorski plavac, dalmatinski okaš i uskršnji leptir. Prisutnost špiljskih staništa unutar šireg područja zahvata (5 km) omogućuje potencijalnu prisutnost strogo zaštićenih špiljskih (troglobiontnih) beskralješnjaka, od kojih su na ovome području zabilježene dvije vrste puževa: lički špiljaš i tupi špiljaš.

Na samom području zahvata i širem području (5 km) VE Ljut nalaze se vodotoci koji su pogodna staništa za faunu vodozemaca, kao što su žabe i vodenjaci. S obzirom na prisutnost vodoroktoka unutar područja
predviđenog za planiranu vjetroelektranu VE Ljut, moguća je prisutnost strogo zaštićenih vrsta vodozemaca: žuti mukač (Bombina variegata), gataljinka (Hyla arborea) i veliki vođenjak (Triturus carnifex), a u podzemlju čovječja ribica (Proteus anguinus).

Za razliku od vodozemaca, na području je zabilježeno puno više vrsta gmazova, zbog pogodnih staništa suhih submediteranskih kamenjarskih pašnjaka, bukovih šuma, zapuštenih poljoprivrednih površina i vodotoka. Prema Crvenoj knjizi vodozemaca i gmazova (Jelić i sur. 2015.), na širem području su rasprostranjene strogo zaštićene vrste zmija smukulja (Coronella austriaca), poskok (Vipera ammodytes), planinski žutokrug (Vipera ursinii) i bjelica (Zamenis longissimus). Ove vrste su vezane uz krške kamenjarske livade te šumska područja gdje postoji dovoljno skrovišta poput suhozida, hrpa kamenja, gustiša i zečijih rupa. Stoga je njihova pojava na području obuhvata zahvata moguća. Od guštera, na području zahvata su potencijalno rasprostranjene strogo zaštićene vrste: velebitska gušterica (Iberolacerta horvathi), livadna gušterica (Lacerta agilis), zelembač (Lacerta viridis), krška gušterica (Podarcis melsellensis) i zidna gušterica (Podarcis muralis).

Na području planiranog zahvata očekuje se prisutnost skupina ptica specifičnih za bukove šume, zapuštene poljoprivredne površine te kamenjarske pašnjake kao što su vrapčarke (Passeriformes), djetlovke (Piciformes), golubovke (Columbiformes), sovke (Strigiformes) i ptice grabljivice. Prema Pravilniku o strogo zaštićenim vrstama (NN 144/13, 73/16), Crvenoj knjizi ptica Hrvatske (Tituš i sur. 2013.), strogo zaštite i ugrožene vrste ptica šire područja ugrožene su u podzemlju čovječja ribica (Proteus anguinus).

Šire područje zahvata potencijalan je areal rasprostranjenosti za strogo zaštićene vrste grabljivica: kobac (Accipiter nius), škanjac (Buteo buteo), suri orao (Aquila chrysaetos), zmijar (Circaetus gallicus), vjetruša (Falco tinnunculus), sivi sokol (Falco peregrinus) i škanjac osaš (Falco subbuteo) i škanjac osaš (Falco subbuteo). Sve navedene vrste ptica se potencijalno gniježde na širem području utjecaja zahvata. Na području obuhvata zahvata prema Mikulić i sur. (2019.) preklapa se jedan teritorij surog orla (Aquila chrysaetos). Teritorij surog orla Zrmanja - Vrelo Zrmanje preklapa se malim dijelom sa jugoistočnim dijelom obuhvata zahvata planirane VE Ljut, dok na udaljenosti 4 km sjeverno od obuhvata zahvata prostire se drugi teritorij surog orla Mazin. Unutar šire područja zahvata na otvorenim staništima poput zapuštenih poljoprivrednih površina mogu se potencijalno pojaviti strogo zaštićene vrste: livadna trepteljka (Anthus pratensis), bijela pastirica (Motacilla alba) i grmuša pjenica (Sylvia communis).

Fauna ugroženih i strogo zaštićenih vrsta sisavaca prema Pravilniku o strogo zaštićenim vrstama (NN 144/13, 73/16) i Crvenoj knjizi sisavaca Hrvatske (Antolović i sur. 2006.) potencijalno prisutna na širem području zahvata (5 km od granice obuhvata zahvata) prikazana je u tablici (Tablica 3.6-4). Predstavnike faune malih sisavaca čine kukcojedi (Eulipotyphla) i glodavci (Rodentia). Među glodavicima se ističu sivi puh (Glis glis), vrtni puh (Eliomys quercinus), planinska voluharica (Chionomys nivalis) i strogo zaštićene vrste puh orašar (Muscardinus avellanarius) i dinarski voluhar (Dinaromys bogdanovii). Na širem području moguća je i prisutnost široko rasprostranjenih vrsta sisavaca poput vjeverice (Bombina variegata), gataljinka (Hyla arborea) i velike vođenjake (Triturus carnifex), a u podzemlju čovječja ribica (Proteus anguinus).

Od velikih zvijer po širem području obuhvata zahvata moguća je prisutnost vuka (Canis lupus), risa (Lynx lynx) i smeđeg medvjeda (Ursus arctos). Prema Izvješću o stanju populacije vuka za razdoblje od 2018.-2019. godine (Kusak i sur. 2020.) zahvat se jednim dijelom preklapa s područjem na kojem obitavaju čopor Srb s potencijalno 13 jedinki i čopor Obrovac-Vučipolje s potencijalno 6 jedinki, od kojih je jedna dokazano prisutna, a na širem području zahvata obitavaju čopor Vrelo Zrmanje s 5 dokazano prisutnih jedinki te čopor Ličko polje s potencijalno 2 jedinke, od kojih je jedna dokazano prisutna.

Prema dostupnim podacima na širem području obuhvata zahvata moguća je prisutnost 13 vrsta šišmiša (Tablica 3.6-1). Sve vrste šišmiša su strogo zaštićene. Prema Crvenoj knjizi sisavaca Hrvatske (Antolović i sur. 2006.) potencijalno prisutne vrste na širem području zahvata su dugokrili pršnjak (Mniotipterus schreibersii), velikouhi šišmiš (Myotis bechsteinii), riđi šišmiš (Myotis emarginatus), veliki šišmiš (Myotis
myotis), mali večernjak (Nyctalus leisleri), gorski dugoušan (Plecotus macrobularis), južni potkovnjak (Rhinolophus euryale), veliki potkovnjak (Rhinolophus ferrumequinum) i mali potkovnjak (Rhinolophus hipposideros). Najbliža međunarodno značajna skloništa šišmiša su izvor Krnjeze (udaljen 11,8 km), Topla peć na Krupi (udaljena 13,5 km) i Vratolom (udaljen 16,6 km) te Golubnjača i Velika Kušača (18,8 km). Na izvoru Krnjeze i u Vratolomu su prisutne porodiljne kolonije 2, odnosno 6 vrsta. U Toploj peći na Krupi prisutno je 5 vrsta tijekom cijele godine. S obzirom na udaljenost međunarodno značajnih skloništa i područja ekološke mreže HR5000022 Park prirode Velebit značajnog za šišmiše (udaljeno otprilike 1,2 km) od lokacije planiranog zahvata te maksimalne udaljenosti koje pojedine vrste šišmiša mogu preletjeti (Kyheröinen i sur. 2019.), osim već navedenih vrsta, moguća je prisutnost vrsta širokouhi mračnjak (Barbastella barbastellus), dugonogi šišmiš (Myotis capaccinii), oštrouhi šišmiš (Myotis blythii) i Blazijev potkovnjak (Rhinolophus blasii).

3.7. Zaštićena područja

Obuhvat zahvata planirane vjetroelektrane nalazi se 0,5 km sjeverno od područja Parka prirode Velebit, zaštićenog prema Zakonu o zaštiti prirode (NN 80/13, 15/18, 14/19, 127/19). Park prirode Velebit najveće je i najloženije zaštićeno područje u Republici Hrvatskoj. Reljefno i vegetacijski obuhvaća najznačajniju planinu Hrvatske, ali i šire Mediterana, koja je zbog svojih prirodnih vrijednosti i značenja za očuvanje biološke raznolikosti planeta 1978. godine uvrštena u mrežu međunarodnih rezervata biosfere UNESCO-a (Man and the Biosphere Programme – MAB) (MINGOR 2020.)

Druga zaštićena područja u blizini obuhvata zahvata su geomorfološki spomenik prirode Cerovačke pećine na udaljenosti od 10 km južno od zahvata te hidrološki spomenik prirode Vrelo rijeke Une na udaljenosti od 10 km sjeveroistočno od obuhvata zahvata (Tablica 3.7-1, Slika 3.7-1), no zbog karakteristika zahvata, temeljni fenomena zaštite (geomorfologija i hidrologija) i udaljenosti tih zaštićenih područja, isključena je mogućnost utjecaja zahvata na ta područja.

<table>
<thead>
<tr>
<th>Zaštićeno područje</th>
<th>Status</th>
<th>Uključeno/Isključeno u analizu utjecaja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velebit</td>
<td>Park prirode</td>
<td>Uključeno</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obuhvat zahvata se nalazi na približnoj udaljenosti od 600 m sjeverno od područja Parka prirode.</td>
</tr>
<tr>
<td>Vrelo rijeke Une</td>
<td>Spomenik prirode hidrološki</td>
<td>Isključeno</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obuhvat zahvata nalazi se oko 9,3 km jugoistočno od zaštićenog područja.</td>
</tr>
<tr>
<td>Cerovačke pećine</td>
<td>Spomenik prirode geomorfološki</td>
<td>Isključeno</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obuhvat zahvata nalazi se oko 5 km istočno od zaštićenog područja.</td>
</tr>
</tbody>
</table>

Tablica 3.7-1 Pregled najbližih zaštićenih područja u odnosu na planirani zahvat
3.8. Ekološka mreža

Područja ekološke mreže Europske unije Natura 2000 na prostoru Republike Hrvatske utvrđena su Uredbom o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže (NN 80/19) (dalje u tekstu Uredba). Dijele se na četiri tipa područja značajna za očuvanje: područja očuvanja značajna za ptice (POP), područja očuvanja značajna za vrste i stanišne tipove (POVS), vjerojatna područja očuvanja značajna za vrste i stanišne tipove (vPOVS) i posebna područja očuvanja značajna za vrste i stanišne tipove (PPOVS).

Prema Uredbi obuhvat zahvata se nalazi unutar područja očuvanja značajnog za vrste i stanišne tipove HR2001373 Lisac. U radijusu od 20 km od granice obuhvata zahvata nalazi se ukupno 26 područja ekološke mreže (Tablica 3.8-1, Slika 3.8-1).

Tablica 3.8-1 Područja ekološke mreže u radijusu od 20 km od granica obuhvata zahvata

<table>
<thead>
<tr>
<th>Status područja</th>
<th>Područje ekološke mreže</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP</td>
<td>HR1000021 Lička krška polja</td>
</tr>
<tr>
<td></td>
<td>HR1000022 Velebit</td>
</tr>
<tr>
<td>POVS</td>
<td>HR2000089 Milića špilja</td>
</tr>
<tr>
<td></td>
<td>HR2000632 Krbavsko polje</td>
</tr>
</tbody>
</table>

Slika 3.7-1 Zaštićena područja u široj okolici zahvata (Izvor: bioportal, http://www.bioportal.hr/gis, prosinac 2021.; izradio Oikon d.o.o.)
HR2000641 Zrmanja
HR2000874 Krupa
HR2000879 Lapačko polje
HR2000981 Izvor Jablan
HR2001012 Ličko polje
HR2001058 Lička Plješivica
HR2001068 Radljevac
HR2001069 Kanjon Une
HR2001181 Izvor Bakovac
HR2001253 Poštak
HR2001254 Dolac Sekulića
HR2001255 Bulji
HR2001256 Međugorje – Stružnica
HR2001267 Ričica
HR2001268 Otuča
HR2001294 Bruvno
HR2001373 Lisac
HR2001374 Područj oko špilje Vratolom
HR2001375 Područje oko špilje Golubnjače
HR2001398 Dabašnica – Srebrenica
HR2001399 Kobilica
HR5000022 Park prirode Velebit

*POVS – Područja očuvanja značajna za vrste i stanišne tipove, POP – područja očuvanja značajna za ptice
Izgradnja vjetroelektrane Ljut

Prema „Guidance document on wind energy developments and EU nature legislation“ (European commission 2020.), Smjernicama za izradu studija utjecaja na okoliš za zahvate vjetroelektrana (MZOPUG i APO d.o.o. 2010.) te uzimajući u obzir ekologiju ciljnih vrsta i karakteristike zahvata, u analizu utjecaja planiranog zahvata VE Ljut uzeto je 6 područja ekološke mreže (Tablica 3.8-2).

Tablica 3.8-2 Popis analiziranih područja ekološke mreže na širem području zahvata VE Ljut

<table>
<thead>
<tr>
<th>Status područja</th>
<th>Područje ekološke mreže</th>
<th>Opis</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP</td>
<td>HR1000021 Lička krška polja</td>
<td>Obuhvat zahvata nalazi se na približno 4,3 km istočno od područja ekološke mreže.</td>
</tr>
<tr>
<td></td>
<td>HR1000022 Velebit</td>
<td>Obuhvat zahvata nalazi se na <1 km sjeverno od područja ekološke mreže.</td>
</tr>
<tr>
<td>POVS</td>
<td>HR2001253 Krbavsko polje</td>
<td>Obuhvat zahvata nalazi se na približno 19,8 km jugoistočno od područja ekološke mreže.</td>
</tr>
<tr>
<td></td>
<td>HR2001058 Lička Plješivica</td>
<td>Obuhvat zahvata nalazi se na približno 19 km južno od područja ekološke mreže.</td>
</tr>
<tr>
<td></td>
<td>HR2001373 Lisac</td>
<td>Obuhvat zahvata se nalazi unutar područja ekološke mreže.</td>
</tr>
<tr>
<td></td>
<td>HR5000022 Park prirode Velebit</td>
<td>Obuhvat zahvata nalazi se na <1 km sjeverno od područja ekološke mreže.</td>
</tr>
</tbody>
</table>
područja ekološke mreže.

POVS – Područja očuvanja značajna za vrste i stanišne tipove, POP – područja očuvanja značajna za ptice

Značajke prethodno navedenih područja ekološke mreže u blizini planiranog zahvata prikazane su u nastavku:

HR1000021 Lička krška polja

<table>
<thead>
<tr>
<th>Površina (ha)</th>
<th>83 019,69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karakteristike područja</td>
<td>Kompleks brojnih krških polja u ličkom području, s prostranim vlažnim i suhim travnjacima, poplavnim nizinama, riječkama i podzemnim potocima. POP Lička krška polja najvažnije je POP u Hrvatskoj za kosca (22 % nacionalne gnijezdeće populacije), sivog svračka (22 %) i rusog svračka (10 %). Otvorena staništa važna su za gniježđenje eje livadarke (18,3 % nacionalne gnijezdeće populacije) i zmijara (2,7 %) kao i za migratornu crvenonogu vjetrušu i zimovalicu eju strnjaricu. POP Lička krška polja, uz POP Donja Posavina, jedino je nalazište u Hrvatskoj s gnijezdećom populacijom vrste šljuke kokošice (27 % nacionalne gnijezdeće populacije) s Nacionalnog crvenog popisa. U POP Lička krška polja obitava najveći postotak nacionalne gnijezdeće populacije pgjave grmuša u Hrvatskoj (16,7 %) (Zavod za ornitologiju 2013.).</td>
</tr>
<tr>
<td>Mogući razlozi ugroženosti područja</td>
<td>Modifikacija uzgojnih praksi, intenzivna poljoprivreda, napuštanje i nedostatak košnje, napuštanje stočarstva i nedostatak ispaše, nedostatak uzgajanja životinja, lovstvo, kanaliziranje vodotoka, poplave, promjene hidrografskih procesa.</td>
</tr>
</tbody>
</table>

HR1000022 Velebit

<table>
<thead>
<tr>
<th>Površina (ha)</th>
<th>203 517,25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karakteristike područja</td>
<td>Obuhvaća najveću hrvatsku planinu s raznolikim stanišima (šumska, otvorena, stjenovita i mješovita staništa). Cijelo je područje zaštićeno kao Park prirode Velebit, uključujući dva nacionalna parka (NP Sjeverni Velebit i NP Paklenica) te je uvršten na UNESCO-ov popis rezervata čovjeka i biosfere. POP područje Velebit je, uz Gorski kotar i sjeverna Lika, najvažnije područje gniježđenja u Hrvatskoj za sljedeće ptice dupljašice: 25 % nacionalne populacije planinskog Šuka, 33 % nacionalne populacije malog Šuka, 14,3 % nacionalne populacije jastrebače te 25 % nacionalne populacije planinskog djetlića i 30 % nacionalne populacije troprstog djetlića. Također, najvažnije je područje gniježđenja u Hrvatskoj za tetrijebu gluhana gdje se gnijezdi čak 60 % nacionalne populacije veze s jate i 35 % nacionalne populacije. Ovo područje je najvažnije područje gniježđenja u Hrvatskoj za vrtnu strnadicu, 30 % nacionalne populacije bijele strnadi i 43 % nacionalne populacije. Što se tiče grabljivica, na ovom području se gnijezdi 20 % Nacionalne populacije surog orla, 10 % Nacionalne populacije zmijara te 15 % Nacionalne populacije sivog sokola. Na gorskim travnjacima srednjeg Velebita gniježde se male populacije kosaca (Tutiš i sur. 2013.).</td>
</tr>
<tr>
<td>Mogući razlozi ugroženosti područja</td>
<td>Modifikacija uzgojnih praksi, napuštanje stočarstva i nedostatak ispaše, gospodarenje i iskorištenje šuma, lovstvo, sportske i rekreacijske aktivnosti na otvorenom, planinarenje i alpinizam.</td>
</tr>
</tbody>
</table>
HR2000632 Krbavsko polje

<table>
<thead>
<tr>
<th>Površina (ha)</th>
<th>14 040,90</th>
</tr>
</thead>
</table>

Karakteristike područja

Krbavsko polje nalazi se u središnjem dijelu Like, pod jugozapadnim obroncima Ličke Plješivice - poplavno krško polje s tokovima Krbava i Krbavica. Zaravnjena visoravan Krbavskog polja nalazi se između 600 i 650 m nadmorske visine i proteže se u smjeru sjeverozapad-jugoistok. POVS Krbavsko polje važno je za vrste vodozemaca žuti mukač i veliki vodenjak te nalazište sa značajnom populacijom ilirskog procijepka. Također je važno nalazište za leptira močvarnu riđu. Dio ovog nalazišta, zaštićen kao poseban rezervat šumske vegetacije “Laudonov gaj” na ukupnoj površini od 33 ha, važan je za hrastovu strizibubu i predstavlja jedino nalazište u alpskom području za ovu vrstu. Ostaci hrastove šume zasađene 1746. godine važno su nalazište za tipove staništa 6430 i 6510. Krbavsko polje jedino je nalazište važno za dvije hrvatske endemske vrste: krbavsko svjetlje (Telestes fontinalis) i krbavsku gaovicu (Delminichthys krbavensis). Dio ovog područja, zaštićen kao Značajan krajolik Bijeli Potoci – Kamensko zbog dobro očuvanog kompleksa šuma, travnjaka i pašnjaka. POVS Krbavsko polje važno je mjesto za tipove staništa 62A0, 6410, 9160 i 6210.

Mogući razlozi ugroženosti područja

Intenziviranje poljoprivrede, vojna upotreba i građanski nemiri, napuštanje stočarstva i nedostatak ispaše, odlaganje otpada i izmijene plavljenja.

HR2001058 Lička Plješivica

<table>
<thead>
<tr>
<th>Površina (ha)</th>
<th>36 653,47</th>
</tr>
</thead>
</table>

Karakteristike područja

Mogući razlozi ugroženosti područja

Krivolov, lov i sakupljanje divljih kopnenih životinja, gospodarenje i iskorišćavanje šumskih resursa, te staze i željezničke pruge.
HR2001058 Lička Plješivica

Područje

HR2001373 Lisac

<table>
<thead>
<tr>
<th>Površina (ha)</th>
<th>9 201,58</th>
</tr>
</thead>
</table>

Karakteristike područja

POVS Lisac nalazi se sjeveroistočno od grada Gračaca i sjeverozapadno od planine Dinare. Područje je relativno veliko (92 km²) i sastoji se od nekoliko vrhova visine između 1200 i 1400 m nadmorske visine (Lisac, Gutešin vrh, Orozova, Veliki Urljaj, Visibaba) i okolnog područja s dolinama, malim vršnim područjem, strmim padinama. Na svim tim vrhovima su manje ili veće livade koje bi mogle poslužiti kao stanište planinskog žutokruga, ali najprikladnije stanište je vrh Lisac (1335 m). Submediteranski i epi-mediteranski suhi travnjaci su u vrlo dobrom stanju. Na ovom području nema cesta, gradova ili turista. Važno je nalaziše vrsta planinskog žutokruga i žutog mukača. Značajno je područje za stanišni tip 62A0.

Mogući razlozi ugroženosti područja

Proizvodnja energije vjetrom i hidrauličke promjene uzrokovane antropogenim utjecajem.

HR5000022 Park prirode Velebit

<table>
<thead>
<tr>
<th>Površina (ha)</th>
<th>182 852,40</th>
</tr>
</thead>
</table>

Karakteristike područja

Park prirode Velebit obuhvaća veći dio planine Velebit i dolinu krške rijeke Zrmanje i najveće je zaštićeno područje prirode u Hrvatskoj. Položaj i struktura planine omogućili su razvoj raznolikog životinjskog svijeta. Do danas je registrirano 2 700 biljnih vrsta, od kojih je 78 endemičnih, među kojima je i poznata velebitska degenija. Tercijarne reliktna vrste, poput hrvatske sibireje, također su posebno važne. Različiti tipovi staništa i specifična klima pogoduju mnogim divljim životinjama na području Velebita pa se tako tamo mogu naći mnoge vrste faune koje su rijetke i ugrožene kao npr. dugonogi šišmiš, tetrijeb gluhan i neke endemske vrste. POVS Velebit je vrlo važno područje za biljne vrste: cjelolatična žutilovka, kitaibelov pakujac, Skopolijeva gušarka, velika sasa, za endemsku vrstu dalmatinsku, te za vrstu mahovine koja nastanjuje prašumske ekosustave. Ovo je područje važno za herpetofaunu - zmije crvenkrpicu i četveroprugaro kravosasa, dok je južne padine planine Velebit visoke do 700 m predstavljaju značajna staništa za kopnenu kornjaču. Također je Velebit jedno od 5 poznatih nalazišta i najvažnije područje u Hrvatskoj za vrstu zmije planinski žutokrug. Smatra se da je područje značajnog prisustva sve tri velike zvijeri u Hrvatskoj: ris, smeđi medvjed i vuk. Velebit je značajno područje rasprostranjenosti dinarskog voluhara, te za vrstu leptira močvarnu riđu i moljca danje medonjice. Područje je karakteristično za strogo zaštićenu vrstu leptira, dalmatinskog okaša, alpske kornjače i običnog jelenka. Velebit je važno područje za vapnenačke stjenovite.
padine s hazmofitskom vegetacijom te za carbonatna gorska, pretplaninska i planinska točila (*Thlaspietea rotundifolii*). Važno je područje za 91K0 Ilirske bukove šume, te za 91L0 *Epimedio-Carpinetum betuli*, 9530 *Ostryo-Pinetum nigrae*, te za 9410 Acidofilne šume smreke brdskog i planinskog pojasa, koje se obično razvijaju na strmim padinama i blokovima vapnenca. Područje Velebita važno je za stanišne tipove 6410 Travnjaci beskoljenke i 6210 Suh kontinentalni travnjaci. Unutar ekološke mreže HR5000022 Park prirode Velebit nalaze se 8310 Špilje i jame zatvorene za javnost. To je važno područje za vrstu kornjaša tankovrati podzemljar. Također, važno je područje za hranjenje i sklanište velikouhog šišmiša i širokouhog mračnjaka, zbog porodiljnih kolonija dugokrilog pršnjaka, oštouhog šišmiša, dugonogog šišmiša, riđeg šišmiša, velikog šišmiša, južnog potkovnjaka, velikog potkovnjaka i malog potkovnjaka, migratornog mjesta dugokrilog pršnjaka, Blazijevo potkovnjaka, južnog potkovnjaka, velikog potkovnjaka i malog potkovnjaka. Na ovom području javlja se jedan od rijetkih poznatih velikih hibernakula Blazijevo potkovnjaka, a i međunarodno je važno podzemno nalazište oštouhog šišmiša, dugonogog šišmiša, velikog šišmiša i dugokrilog pršnjaka.

Mogući razlozi ugroženosti područja

Napuštanje stočarstva i nedostatak ispaše, napuštanje poljoprivrede, ceste, staze i željeznički putevi, komunalne i servisne linije, urbanizirana područja i ljudska naselja, industrijska i komercijalna područja, lovstvo i sakupljanje divljih kopnenih životinja, ribarstvo, vojna upotreba i građanski nemiri, odlaganje otpada, invazivne alohtone vrste, požari, hidrauličke promjene uzrokovanome antropogenim utjecajem i promjene abiotskih uvjeta.

3.9. Krajobrazne značajke

Planirani zahvat smješten je unutar općine Gračac u Zadarskoj županiji. Lokacija planiranog zahvata nalazi se uz naselje Velika Popina, istočno od mjesta Glogovo, južno od mjesta Dabašnica i sjeverno od državne ceste D1 (na reljefno razvijenom području u okolici Velike Popine. Prema krajobraznoj regionalizaciji Hrvatske s obzirom na prirodna obilježja (Bralić I., 1995), planirani zahvat nalazi se na južnom dijelu krajobrazne jedinice Lika (Slika 3.9-1). Ovu krajobraznu jedinicu karakteriziraju velika krška polja (na visinama od 450 do 700 m) i rubno smješteni planinski vijenci, dok su brda uglavnom pod šumom. Šume na jugoistočnom dijelu ove krajobrazne jedinice su degradirane i veće je učešće goleti.
Širi prostor planiranog zahvata karakterizira iznimno krševito područje. Na većem dijelu područja nalaze se prostrani travnjaci, dok se na jugoistočnim padinama i usjecima nalazi šumski pokrov. Travnjaci su u izrazitom kontrastu s okolnim šumskim pokrovom. Kontrast se čita u boji i teksturi (šuma - tamna, hrapava površina i travnjaka - svijetla, glatka površina), a naročito u volumenu i plodini (kontrast šume i travnjaka te travnjaka i golog krša). Bojom se posebno ističu i bijeli goli vrhovi krša, koje mjestimice “krasi” oskudna vegetacija.

U širem obuhvatu (5 km) planiranog zahvata nema većih naselja ni značajnije prometne infrastrukture, osim državne ceste D1 (Gračac-Knin), jugozapadno od planiranog obuhvata uz koju prolazi i željeznička pruga od međunarodnog značaja M604 Zagreb-Gospić-Knin-Split i županijske ceste ŽS203 Dobrošelo (D218) – D. Srb – Otrić (D1) uz istočnu granicu zahvata. Nekih 300-500 m južno od zahvata izgrađena je VE ZD6 te proširenje VE ZD6 puštena u rad 2010. godine.

Područje zahvata

Planirani zahvat nalazi se na brdovitom području prosječne visine od 1100 metara. Dominantni površinski pokrov na području zahvata su također krški pašnjaci, a na najvišim područjima obuhvata dominira goli krš.

Prostor djeluje otvoreno i prostrano zbog oskudne i niske vegetacije, a zbog visinskog položaja s obuhvata se pružaju duge i široke panoramske vizure na okolna polja, koja se nalaze na zapadu obuhvata te na poddinarsko sredogorje na istoku obuhvata, koje je vrlo razvedeno brojnim grebenima i vrhovima.
3.10. Gospodarske djelatnosti

3.10.1. Šumarstvo

Predmetni zahvat VE Ljut administrativno se nalazi na području kojim gospodari Uprava šuma Podružnica Gospić, šumarija Gračac, a obuhvaća gospodarske jedinice: „Maslovara“ (50,9 % ukupne površine obuhvata), „Kokirna-Mila ljut“ (45,9 % ukupne površine obuhvata), „Jelovi tavani-Kučina kosa“ (2,5 % ukupne površine obuhvata) i „Bogutovac“ (0,7 % ukupne površine obuhvata). Šume u privatnom vlasništvu objedinjene su u gospodarsku jedinicu „Gračac-Osredci-Pribudić“.

Sve gospodarske jedinice predmetnog područja su uređene, odnosno za sve su izrađeni programi/osnove gospodarenja, sa razdobljima važenja:

- od 01.01.2020. do 31.12.2029. za GJ Jelovi tavani-Kučina kosa i GJ Bogutovac

Prema dostupnim podacima, unutar obuhvata zahvata nalazi se ukupno 1.718,3 ha šuma i šumskog zemljišta, od čega 1.586,5 ha državnih i 131,8 ha privatnih šuma.

Prostorni raspored i vlasnička struktura šuma na području obuhvata prikazana je na Slika 3.10-1.

3.10.2. Divljač i lovstvo

Predmetni zahvat nalazi na području jednog ustanovljenog lovišta i to zajedničko otvoreno lovište broj: „XIII/131 – Ljubovo“ Navedenim lovištima temeljem važećih ugovora gospodare lovoovlaštenici:

<table>
<thead>
<tr>
<th>Broj i naziv lovišta</th>
<th>Lovoovalaštenik</th>
<th>Adresa</th>
<th>Klasa ugovora</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII/131 - Ljubovo</td>
<td>LUKSIM TRGOVINA d.o.o.</td>
<td>F. Alfirevića 3, Zadar</td>
<td>003-03/19-1/22</td>
</tr>
</tbody>
</table>

U predmetnom lovištu koje prema odluci o ustanovljenju ima ukupnu površinu 13.161 ha obitavaju sljedeće glavne vrste divljači: Srna obična, svinja divlja, i zec obični.

Pored ovih vrsta u lovištu kao sporedne vrste divljači dolaze i: jazavac, mačka divlja, kuna bjelica, kuna zlatica, liska, čagalj, jarebica kamenjarka grivna, prepelica pućpura, šljuka bena, vrana siva, svraka i šojka kreštalica.

3.11. Kulturna baština

Zaštita kulturno-povijesnih vrijednosti propisana je Zakonom o zaštiti i očuvanju kulturnih dobara ("Narodne novine", br. 69/99, 151/03, 157/03, 87/09, 88/10, 61/11, 25/12, 136/12, 157/13, 152/14, 44/17, 90/18, 32/20, 62/20) i pod nadzorom je Konzervatorskog odjela. Za područje Zadarske županije nadležan je Konzervatorski odjel u Zadru (KZD).

Na području Općine Gračac nalazi se deset zaštićenih nepokretnih kulturnih dobara (Tablica 3.11-1). Prema klasifikaciji kulturnih dobara, osam su sakralne graditeljske baštine, te jedna vojna i obrambena građevina i jedna komunalna tehnička građevina.

Tablica 3.11-1 Zaštićena kulturna dobra na području Općine Gračac

<table>
<thead>
<tr>
<th>Rbr.</th>
<th>Registarski broj</th>
<th>Naziv kulturnog dobara</th>
<th>Adresa</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RZG-0232-1969.</td>
<td>Ostatci staroga grada Zvonigrada</td>
<td>Palanka, PALANKA</td>
</tr>
<tr>
<td>2</td>
<td>Z-6006</td>
<td>Crkva Vaznesenja Gospodnjega</td>
<td>Donja Suvaja, DONJA SUVAJA 40</td>
</tr>
<tr>
<td>3</td>
<td>Z-6005</td>
<td>Crkva sv. Jurja Mučenika</td>
<td>Gračac, UL.KRALJA TOMISLAVA 11</td>
</tr>
<tr>
<td>4</td>
<td>Z-6106</td>
<td>Stari most na rijeci Otuči</td>
<td>Gračac, ULICA NIKOLE TESLE</td>
</tr>
<tr>
<td>5</td>
<td>Z-6004</td>
<td>Crkva Rođenja Presvete Bogorodice</td>
<td>Mazin, MAZIN</td>
</tr>
<tr>
<td>6</td>
<td>Z-6011</td>
<td>Crkva Rođenja Blažene Djevice Marije</td>
<td>Palanka, PALANKA</td>
</tr>
<tr>
<td>7</td>
<td>Z-6024</td>
<td>Crkva sv. Proroka Ilije</td>
<td>Velika Popina, VELIKA POPINA</td>
</tr>
<tr>
<td>10</td>
<td>Z-7047</td>
<td>Crkva sv. Jovana Preteče</td>
<td>Bruvno, BRUVNO</td>
</tr>
</tbody>
</table>
Uvidom u Registar kulturnih dobara Ministarstva kulture i medija Republike Hrvatske, na samoj lokaciji zahvata nema zaštićenih kulturnih dobara. Unutar šireg područja (5 km od zahvata), na udaljenosti od oko 1 km, nalazi se kulturno dobro Z-6024 Crkva Sv. Ilije u naselju Velika Popina (Slika 3.11-1).

![Slika 3.11-1. Zaštićena kulturna dobra u obližnjim naseljima (Izvor: https://geoportal.kulturnadobra.hr/servisi/grafika/RKD_MK_Javni/wms; Obrada: Oikon d.o.o.).](image)

3.12. Naselja i stanovništvo

Obuhvat zahvata teritorijalno pripada Općini Gračac, naseljima Velika Popina, katastarskim općinama Velika Popina, Grab i Glogovo. Nalazi se na području Zadarske županije.

Prema rezultatima Popisa stanovništva 2011. Zadarska županija je imala 170 017 stanovnika (3,97 % od ukupnog st. RH) u 229 registriranih naselja (6 gradova i 28 općina) dok je prosječna prostorna gustoća naseljenosti iznosila 46,63 st/km² za cijelu Županiju što predstavlja određeni porast u odnosu na 2001. godinu.

Općina Gračac obuhvaća površinu od 957,22 km² te je prostorno najveća općina u sastavu Zadarske županije.

S gustoćom naseljenosti od svega 4,1 st/km² Općina Gračac je najslabije naseljena općina Zadarske županije.

Naselje Gračac je administrativno i gravitacijsko središte.

Tijekom Domovinskoga rata ovo je područje bilo najugroženiji dio županije što je uzrokovalo velike demografske promjene naročito u pogledu iseljavanja stanovništva, a time i pogoršanje i onako loših demografskih prilika. Postojeće stanje sustava naselja na području općine Gračac određeno je dosadašnjim razvojem, uvjetima korištenja prostora i društvenim prilikama. Tako je nastao sustav malih i raspršenih naselja (zaseoka). Ratna zbivanja utjecala su na demografsko osiromašenje ovog područja.

3.13. Buka

Naselje Velika Popina okruženo je predmetnim zahvatom i nalazi se na udaljenosti od oko 700-800 m južno od zahvata. Najблиža okolna naselja nalaze se unutar 1 km udaljenosti od obuhvata zahvata. To su zaseoci u sklopu naselja: Glogovo (oko 550 m) i Kupirovo (oko 600 m) dok se ostala nalaze više od 4 km udaljeno od obuhvata zahvata: Bruvno, Vrpolje, Grab i Gračac. Međutim, naselja su udaljena više od 1 km od prvih vjetroagregata. Proračunom emisija buke bit će potrebno potvrditi da razine buke u ovim naseljima ne prelaze dozvoljene vrijednosti.

U područjima tih naselja okoliš je uglavnom opterećen prometnom bukom okolnih cesta (državne, županijske i lokalne ceste) ili su uzrokovani uglavnom aktivnostima stanovništva. Odnos prometica i građevinskih područja prikazuje Prostorni plan Zadarske županije, kartografski prikaz 2.1 Infrastrukturni sustavi - Prometni i telekomunikacijski sustav (Slika 3.14-1).

3.14.1. Cestovna i željeznička infrastruktura

Prema Odluci o razvrstavanju javnih cesta (NN 18/21) na širem području oko samog zahvata, nalaze se županijske, državne i lokalne ceste. Trase prometnica prikazane su na Slika 3.14-1.

Lokalna cesta L63037 Velika Popina (nerazvrstana cesta - Ž6009) nalazi se 0,7 km južno od obuhvata zahvata, a cesta LC63035 (Glogovo – Vučipolje (D1)) 7,7 km zapadno od zahvata.

Državna cesta DC1 (Gornji Macelj (A2) – Krapina – Zagreb – Karlovac – Gračac – Knin – Brnaze – Split (D8)) nalazi se oko 1,1 km jugozapadno od obuhvata zahvata, dok se županijska cesta ŽC6009 (Velika Popina (L63037) – ŽS203) nalazi oko 2 km, a županijska cesta ŽC5203 (Dobrošelo (D218) – D. Srb – Otrić (D1)) prolazi unutar istočnog dijela obuhvata zahvata.

Uz državnu cestu DC1 prolazi i pruga od međunarodnog značaja M604 Zagreb-Gospić-Knin-Split.
3.14.2. Energetska infrastruktura

Na širem području oko samog zahvata se dalekovodi. Lokacije energetske infrastrukture prikazane su u poglavlju 3.3. na Slika 3.3-2.

Jedan dalekovod TS Gračac-TS Lički Osik (D 110 kV) prolazi 5,6 km sjeverozapadno obuhvata zahvata, DV 220kV Krš Pađene – Brinje i TS Gračac-TS Velika Popina (D 110 kV) na oko 300 m južno, dok treći TS Gračac-TS Srb (D 35 kV) prolazi kroz krajnji istočni dio obuhvata zahvata.

Naj bliži lokalni plinovod (Obrovac) nalazi se oko 12,2 km jugozapadno od obuhvata zahvata.
Slika 3.14-1. Kartografski prikaz Prostornog plana Zadarske županije – 2.1 Infrastrukturni sustavi: Prometni i telekomunikacijski sustav („Službeni glasnik Zadarske županije” 15/14)
4. VARIJANTNA RJEŠENJA ZAHVATA

Izgradnja VE Ljut snage do 300 MW, predviđena je u sedamnaest faza, pri čemu faza predstavlja vjetroagregat s temeljem, plato, elektro i DTK kabel do trafostanice (u dogovoru s HOPS-om) te pristupni put do vjetroagregata. U ovom trenutku nisu razrađena druga varijantna rješenja. Međutim, kako je u tijeku procedura ishođenja elektroenergetske suglasnosti (EOTRP nije još revidiran od strane HOPS-a) razmotrit će se i sljedeća varijantna rješenja zahvata:

Varijantno Rješenje 1 – predviđa upotrebu vjetroagregata promjenjive (fleksibilne) nominalne snage vjetroagregata jednakih gabarita kao onih prikazanih u ovom Zahtjevu, ali u klasi 8 MW.

Varijantno rješenje 2 –, s obzirom na ukupne investicijske troškove i jednostavnost interpolacije u 220 kV prijenosnu mrežu jedno od varijantnih rješenja je izgradnja priključka TS 220/110 kV unutar obuhvata zahvata vjetroelektrana uz izgradnju (uvod) postojećeg DV 220 kV Pađene–Brinje u novu trafostanicu po principu ulaz/izlaz u duljini cca 5km.

Slika 4-1. Varijantno rješenje priključka VE Ljut na prijenosnu mrežu preko priključnog dalekovoda na postojeći DV 220 kV Pađene–Brinje u duljini od 5 km.
5. SAŽETI OPIS MOGUĆIH UTJECAJA ZAHVATA NA OKOLIŠ

5.1. Utjecaj na tlo

Tijekom izgradnje

Utjecaj na tlo i poljoprivredno zemljište očitovat će se u prenamjeni korištenja zemljišta budući da su zahvatom planirane izgradnje pristupnih puteva i vjetroagregata. Navedeni utjecaj moguće je umanjiti obeštećenjem vlasnika poljoprivrednih parcela (krških pašnjaka).

Tijekom korištenja

Prilikom korištenja vjetroelektrana može se očekivati negativan utjecaj na poljoprivredno zemljište, ponajprije na uzgoj stoke odnosno ispašu.

5.2. Utjecaj na stanje voda

Područje vjetroelektrane Ljut uglavnom se nalazi na carbonatnoj podlozi koju karakterizira kavernozno-pukotinska poroznost i slaba do dobra propusnost. Jedan manji dio čine vapnenci i lapori trijasa koji nisu porozni ni propusni. Na području samog zahvata ne nalazi se ni jedno vodno tijelo, već samo povremeni površinski vodotoci. Zbog propusnosti stijena, ne može se u potpunosti isključiti moguć negativan utjecaj tijekom izgradnje. Planirana VE nalazi se na krškom terenu, stoga je moguće brzo širenje onečišćivača u podzemlje te njihov prodor u podzemne vode. Krški teren je vrlo osjetljiv i moguće onečišćenje u podzemnoj vodi može imati veliki doseg. U blizini područja zahvata ne nalaze se u zone sanitarne zaštite.

Tijekom izgradnje

Utjecaji na vodna tijela koji bi se mogli pojaviti tijekom izvođenja radova su kratkotrajni i prestaju nakon završetka radova. Negativni utjecaji mogući su prvenstveno uslijed manipulacije gorivima i mazivima za potrebe građevinske mehanizacije te accidentne situacije u slučaju da se organizaciji gradilišta ne pristupi u skladu s pravilima gradnje. Ukoliko do toga dođe, isto bi moglo negativno utjecati na podzemne vode koje se nalaze na području obuhvata zahvata.

Negativan utjecaj tijekom izgradnje može doći i od sanitarnih voda iz prostorija za radnike, stoga je potrebno predvidjeti njihovo ispuštanje u nepropusne jame s redovitim pražnjenjem prema potrebi ili korištenje kemijskih WC-a.

Potencijalno negativan utjecaj na kakvoću vode može se dodatno umanjiti pravilnim skladištenjem otpadnog materijala, skladištenjem goriva i maziva te punjenjem goriva i pretakanjem u radne strojeve na izgrađenom nepropusnom platou koji ima separator ulja i masti. Pravilnom organizacijom gradilišta i pridržavanjem svih mjera zaštite tijekom izgradnje navedeni utjecaji se mogu smanjiti ili u potpunosti isključiti. Stoga se značajniji utjecaji na vode i vodna tijela tijekom izgradnje zahvata ne očekuju.

Tijekom korištenja

S obzirom na značajke zahvata ocjenjuje se da tijekom korištenja neće biti značajnih negativnih utjecaja na vodna tijela podzemnih i površinskih voda, a uzimajući u obzir da tijekom rada vjetroelektrane neće
nastajati tehnološke otpadne vode. Isto tako zahvat je predviđen kao automatizirano postrojenje bez stalnog boravka ljudi te neće biti potrebno izvoditi sustav vodoopskrbe, niti odvodnje.

U slučaju uklanjanja vjetroelektrane, postupak rastavljanja i uklanjanja je relativno jednostavan i ne uzrokuje veće zahvate u prostoru, pa nema s time povezanih negativnih utjecaja. Materijali od kojih je načinjena vjetroelektrana će se oporabiti ili zbrinuti sukladno s tada važećim propisima.

5.3. Utjecaj na bioraznolikost

Tijekom građenja

Izgradnja VE Ljut snage do 300 MW planirana je u sedamnaest faza, pri čemu jedna faza predstavlja jedan vjetroagregat s temeljem, plato, elektro i DTK kabel do trafostanice na lokaciji te pristupni put do vjetroagregata koji predstavlja funkcionalnu cjelinu tako da se istim može nesmetano pristupiti do vjetroagregata kompletom prometnicom unutar pripadajuće faze. Za potrebe dopreme elemenata za izgradnju vjetroelektrane i manipulativnog prostora za montažu vjetroagregata te za potrebe održavanja koristit će se uglavnom postojeći putevi, a tamo gdje je potrebno provesti će se rekonstrukcija ili prilagodba trase.

Prema Karti staništa (Bardi i sur. 2016.), u široj zoni utjecaja zahvata (radijus 200 m od granica obuhvata zahvata) prevladavaju Istočnojadranski kamenjarski pašnjaci epimediteranske zone (NKS kod C.3.5.2.) i Travnjaci vlasastog zmijka (NKS kod C.3.5.3.), među kojima su prisutne Mezoofilne i neutrofilne čiste bukove šume (NKS kod E.4.5.), Jugoistočnoalpsko-ilariske, termofilne bukove šume (NKS kod E.4.6.), Šume običnog i cng bora (NKS kod E.7.4) i Nasadi četinjači (NKS kod E.9.2.). U pripremi gradilišta i samoj izgradnji vjetroagregata, pripadajućih platoa kao i izgradnji pristupnih puteva, doći će do trajnog gubitka prisutnih staništa i vegetacije. Prema smjernicama vezanim za korištenje energije vjetra ("Guidance document on wind energy developments and EU nature legislation“ 2020.), do najvećeg gubitka staništa i degradacije dolazi u fazi pripreme i konstrukcije turbina, a procjena je da se radi o 3000 m² do 4000 m² po vjetroagregatu. To uključuje konstrukciju vjetroagregata te izgradnju pristupnih puteva koji omogućuju velikim kamionima pristup do elektroagregata. Budući da je predmetnim zahvatom predviđena izgradnja 50 vjetroagregata, prema navedenim smjernicama procjenjuje se da bi se radilo o gubitku od oko 20 ha staništa. Zahvatom je predviđeno što je više moguće korištenje postojećih pristupnih puteva, što će smanjiti ovaj utjecaj zahvata. Platoi i pristupni putevi vjetroagregata izvesti će se na način da tlocrtni i vertikalni elementi budu prilagođeni zahtjevima montaže elemenata vjetroagregata, tehnologiji izvedbe same montaže (odabirot prikladnog krana, upute za montažu u ovisnosti o tipu vjetroagregata) i dinamici rada (JIT-često na vrijeme ili standardna montaža). Postavljanje kabelske infrastrukture predviđeno je po pristupnim putevima, što će također smanjiti gubitke i degradaciju staništa.

Izgradnja može uzrokovati degradaciju i fragmentaciju prisutnih staništa. Uz pravilnu organizaciju gradišta kojom će se osigurati racionalno i učinkovito kretanje građevinske mehanizacije, privremenim skladištenjem materijala zauzeti površine bez vegetacije (goleti), sačuvati drveće gdje god je to moguće, koristiti postojeće putove, unaprijed odrediti privremena odlagališta materijala i otpada te površine za kretanje i parkiranje vozila, voditi računa o devastiranju što manjih površina i posebno o zaštiti prirodnog staništa od posljedica građenja, utjecaj ovog zahvata u vidu degradacije i fragmentacije može se smanjiti.

Moguće je širenje invazivnih biljnih vrsta širom zonom utjecaja zahvata uzrokovano iskopavanjem tla koje sadrži njihove sjemenke ili vegetativne dijelove, nasipavanjem pristupnih putova i manipulativnog platoa oko vjetroagregata tlom te njegovim neprimjerenim odlaganjem. Također, rasprostranjivanje invazivnih vrsta moguće je i gumama mehanizacijskih vozila. Tako se potencijalno može ugroziti kvaliteta okolnih
staništa. Pravilnim uklanjanjem i odlaganjem invazivnih biljnih vrsta i iskopanog tla, održavanjem i čišćenjem mehanizacije, kao i uklanjanjem invazivnih biljnih vrsta i na platao vjetroagregata i pripadajućim pristupnim puteovima, moguće je spriječiti njihovo širenje pa se potencijalan utjecaj širenja invazivnih vrsta može svesti na najmanju moguću razinu.

Rizik od eventualnog onečišćenja tla zbog curenja ulja i goriva iz radnih strojeva smanjit će se planiranjem smeštaja mehanizacijske žice koja je više moguće na postojećoj prometnici i planiranim pristupnim putevima. Obuhvat zahvata planirane vjetroelektrane zauzima površinu od 426 ha, no do trajnog zauzeća staništa i prema planiranju za novo izgrađenih pristupnih putova i platao sa vjetroagregatima (ukupne površine 20 ha). Područje pristupnih putova i platao nasipava se kamenom koji predstavlja pogodno stanište za invazivne vrste, što znači da će gubitak povoljnog staništa za te vrste biti samo na području stupova vjetroagregata i trafostanice.

Prilikom pripreme i izgradnje zahvata, javljat će se kratkotrajan negativan utjecaj na strogo zaštićenu faunu zbog povećanja razine buke, vibracije, emisije čestica i svjetlosti. Vibracije i buke te prisutnost ljudi i radne mehanizacije dovest će do usmrćavanja prisutnih životinjskih jedinki. Životinje će iz tog razloga vjerojatno izbjegavati predmetno područje do završetka građevinskih radova te će tražiti nova mjesta za lov, okupljanje, reprodukciju i migracijske rute, no s obzirom na veličinu zahvata te raširenost staništa prisutnih na području zahvata na širem području, vjerojatno je da izbjegavanje područja zahvata neće značajno utjecati na lokalne populacije. Idejnijim rješenjem planirano je koristiti najsuvremenije tehnologije osiguravanja preventivnih mjera zaštite okoliša kao što je smanjenje emisije buke, čime će se utjecaj razloga na stanište planiranih putova i platao s vjetroagregatima smanjiti.

Tijekom pripreme terena za rekonstrukciju ili prilagodbu trase pristupnih putova te na mjestima izgradnje vjetroagregata postoji mogućnost oštećivanja i uklanjanja gnijezda, nastambi ili životnih prostora strogo zaštićene faune te stradavanja faune zbog naleta vozila i mehanizacije. Kako bi se utjecaj na nastambe umanjio, radove uklanjanja postojećeg pokrova tla i vegetacije treba izvoditi od početka rujna do kraja prosinca, tj. izvan sezone parenja ili gniježđenja. Time se mogu umanjiti ili potpuno izbjeći negativni utjecaji, posebice na ptice koje gnijezde na kamenjarskim pašnjacima te drugu faunu koja su potencijalno rasprostranjeni na području obuhvata zahvata. To se odnosi i na sve ostale životinje koje su rasprostranjene na području obuhvata zahvata, budući da je većina vrsta najaktivnija tijekom proljeća i ljeta.

S obzirom da na području obuhvata zahvata postoji i bukova šuma, moguć je utjecaj oštećivanja i uklanjanja gnijezda, nastambi ili životnih prostora strogo zaštićene faune te stradavanja faune zbog naleta vozila i mehanizacije. Kako bi se utjecaj na nastambe umanjio, radove uklanjanja postojećeg pokrova tela i vegetacije treba izvoditi od početka rujna do kraja prosinca, tj. izvan sezone parenja ili gniježđenja. Time se mogu umanjiti ili potpuno izbjeći negativni utjecaji, posebice na ptice koje gnijezde na kamenjarskim pašnjacima te drugu faunu koja su potencijalno rasprostranjeni na području obuhvata zahvata. To se odnosi i na sve ostale životinje koje su rasprostranjene na području obuhvata zahvata, budući da je većina vrsta najaktivnija tijekom proljeća i ljeta.

S obzirom da na području obuhvata zahvata postoji i bukova šuma, moguć je utjecaj oštećivanja i uklanjanja gnijezda, nastambi ili životinja koje koriste šumska staništa, ali s obzirom na blizu zauzeća postojanih površina zaustečenja, rizik od toga utjecaja je mal. Prilikom rušenja drveća potrebno je potaknuti stabla ostaviti 24 sata kako bi jedinke koje se potencijalno nalaze u njima napustile stabla. Unutar područja obuhvata i u blizini zahvata nalaze se speleološki objekti (Tablica 3.6-3), među kojima ima potencijalnih staništa za strogo zaštićenu faunu, poput šišmiša i životinja prilagođenih za život u

Unutar područja obuhvata i u blizini zahvata nalaze se speleološki objekti (Tablica 3.6-3), među kojima ima potencijalnih staništa za strogo zaštićenu faunu, poput šišmiša i životinja prilagođenih za život u...
podzemlju. Zbog nepoznatih točnih lokacija ulaza i pružanja kanala, ne može se isključiti mogućnost utjecaja buke i vibracije na potencijalno prisutnu špiljsku faunu, kao i moguća onečišćenja prašinom i drugim alohtonim česticama te promjene hidrološkog režima voda koje se prolecuju kroz podzemlje. Zbog vibracija, iskapanja tla i sličnih radova može doći do promjena u fizičkoj strukturi speleološkog objekta.

Također, tijekom kopanja temelja te pri iskopima za potrebe postavljanja električnih i komunikacijskih kablova, postoji rizik od nailaska na nove speleološke objekte i negativnog utjecaja na podzemna staništa i faunu. U slučaju nailaska na speleološki objekt ili njegov dio u obuhvatu zahvata, potrebno je odmah obustaviti radove i bez odgađanja obavijestiti središnje tijelo državne uprave nadležno za poslove zaštite prirode te postupiti po rješenju nadležnog tijela (u skladu s člancima 100., 101., 102., 103. i 104., Zakona o zaštiti prirode, NN 80/13, 15/14, 19/19 te 127/19).

Tijekom korištenja

S obzirom na to da se planirani obuhvat zahvata nalazi na krškom terenu, karakterističnog poroziteta, u slučaju korištenja herbicida za potrebe održavanja obuhvata zahvata, ne može se isključiti negativan utjecaj kemijskih supstanci na podzemna staništa i faunu, ali i vodena staništa na širem području zahvata. Utjecaj na faunu beskralješnjaka, malih sisavaca na kopnu, vodozemaca i gmazova može se smatrati zanemarivim. S obzirom da ove vrste mogu nesto mehaničko odstranjivanje vegetacije (košnja).

Moguća su stradavanja životinja na pristupnim cestama tijekom održavanja zbog naleta vozila, no kako se promet po pristupnim putovima odvija rijetko, ovaj utjecaj se smatra prihvatljivim.

Prema „Mitigating biodiversity impacts associated with solar and wind energy development“ (IUCN, 2021.) neke vrste ptica pokazuju visoku stopu izbjegavanja sudara s vjetroagregatima, stoga postoji mogućnost da im se migracijski putovi mijenjaju. To se naročito odnosi na migratorne ptice koje lete u velikim jatima, po već utvrđenim migracijskim rutama, ali i na ostale vrste ptica koje područje obuhvata zahvata mogu koristiti za lov ili pri lokalnim disperzijama. Kod migratornih vrsta može doći do trošenja ključnih zaliha energije ukoliko moraju mijenjati svjetlost letenja ili napustiti potrebno odmoriste na migracijskom putu. To može dovesti do njihovog stradanja, ali ukoliko pak ne dođe do promjene rute, postoji rizik od stradanja zbog kolizije sa vjetroagregatima. No, zbog staništa dostupnih na području zahvata, smatra se da ptice za odmor biraju staništa dalje od obuhvata planiranog zahvata te da zahvat neće imati neprihvatljiv utjecaj na migratorne ptice.

S obzirom na prikladnost staništa za velike zvijeri i ostale dostupne podatke mala je vjerojatnost da će planirani zahvat imati utjecaj na migracije i stradanje velikih zvijeri. Moguća je pojava pojedinačnih jedinki u disperziji no utjecaj se smatra prihvatljivim.

S obzirom na to da pojedine vrste šišmiša izbjegavaju vjetroelektrane i prilagođavaju svoju ponašanja u letu (Bach i Rahmel 2004.), moguć je utjecaj planiranog zahvata na migracijske rutama šišmiša i ponašanje u letu. S obzirom na to da šišmiši migriraju rutama koje ovise o reljefnim, stanišnim i krajobraznim karakteristikama, na temelju dostupnih podataka ne može se procijeniti nalaze li se planirane lokacije vjetroagregata na migracijskoj ruti nekih vrsta šišmiša te se ne može isključiti značajan utjecaj.
Prisutnošću vjetroagregata u zračnom prostoru otvara se mogućnost kolizije strogo zaštićenih vrsta ptica i šišmiša s vjetroagregatima i ulijetanja jedinki u rotore vjetroagregata te posljedično njihovog stradavanja. Od navedenog utjecaja najviše stradavaju male ptice pjevice i šišmiši, a utjecaj je također prepoznat kod ptica grabljivica i migratornih ptica koje lete u velikim jatima, po već utvrđenim migracijskim rutama. Rizik od kolizije ovisi o stupnju korištenja prostora na području zahvata od strane ptica i šišmiša, ali i o veličini vjetroelektran (broju vjetroagregata). Planirana vjetroelektrana sastojat će se od pedeset vjetroagregata, što je značajan broj, te s tog aspekta predstavlja rizik od kolizije. Također neki vjetroagregati će se graditi u neposrednoj blizini bukovih šuma. Gradnja vjetroelektrane na šumskom području i u njegovoj blizini može biti osobito rizična za šišmiše i ptice jer mnoge vrste love na području šume i uz njen rub, a šišmiši mogu koristiti rubove šuma i kao migracijske koridore.

Na području obuhvata zahvata prema Mikulić i sur. (2019.) preklapa se jedan teritorij Vrela Zrmanje surog orla (Aquila chrysaetos). Teritorij surog orla nalazi se također sjeverozapadno od obuhvata zahvata planirane VE Ljut na nekih 5 km od prvih vjetroagregata te je tijekom monitoringa 2019. zabilježena potencijalna zauzetost teritorija (Slika 5.5-1). Također, osim surog orla, zabilježeni su preleti i drugih ugroženih vrsta ptica grabljivica, ali i ptica iz drugih skupina (Tablica 3.6-4). U slučaju izgradnje planirane vjetroelektrane VE Ljut, utjecaj kolizije jedinki s lopaticama vjetroagregata ne može se isključiti, no rizik ne može precizno odrediti zbog nedostatka podataka o korištenju prostora zahvata od strane surog orla. Intenzitet utjecaja može se potencijalno umanjiti primjenom mjera zaštite; npr. prema „Mitigating biodiversity impacts associated with solar and wind energy development“ (IUCN, 2021.) bojanjem jedne od lopatica vjetroagregata ili dvije trećine sve tri lopatice povećava se mogućnost detekcije vjetroagregata u zračnom prostoru za ptice te je veća mogućnost njihovog izbjegavanja tog područja.

S obzirom na značajna skloništa koja su u lovnom dometu nekih vrsta šišmiša, prisutnost staništa koja predstavljaju pogodna lovačka područja te blizinu šumskih staništa (udaljenost mana od 100 m od VA), nije moguće isključiti utjecaj stradavanja šišmiša uslijed kolizije s vjetroagregatima te uslajedinje u neposrednu blizinu zračnog prostora lopatice, čime dolazi do barotraume (ozljede koja nastaje zbog iznenadne promjene tlaka u plućima životinje). Na temelju postojećih podataka može se zaključiti da postoji mogućnost stradavanja šišmiša i nije moguće isključiti neprihvatljiv utjecaj na faunu šišmiša, ali se potencijalno može umanjiti primjenom mjera zaštite prema „Guidelines for consideration of bats in wind farm projects Revision 2014“ (UNEP/EUROBATS, 2014.).

5.4. Utjecaj na zaštićena područja

Lokacija zahvata nalazi manje od 1 km sjeverno od područja Parka prirode Velebit (Poglavlje 3.7 Zaštićena područja, Slika 3.7-1). Mogući utjecaji na sastavnice faune zaštićenog područja očituju se u vidu efekta barijere na vrste koje koriste područje planiranog zahvata tokom migracija ili lova te time potencijalno dolazi do promjene migracijskih i lovnih ruta ili pak kolizije jedinki ptica i šišmiša s lopaticama vjetroagregata tijekom rada elektrane. Svi prethodno navedeni utjecaji obrađeni su detaljnije u poglavlju 4.3 Utjecaj na biорaznolikost.
5.5. Utjecaj na ekološku mrežu

5.5.1. Samostalni utjecaji zahvata na ekološku mrežu

S obzirom na nizačajke planiranog zahvata, ekološka zahtjeva ciljnih vrsta i udaljenost od najbližih područja ekološke mreže, u analizu samostalnih utjecaja zahvata na ekološku mrežu uvršteno je područje očuvanja nizačajnog za vrste i stanišne tipove (POVS) HR2001373 Lisac unutar kojeg se nalazi dio obuhvata planiranog zahvata VE Ljut. Također, sagledani su i samostalni utjecaji na ciljne vrste ptica i šišmiša područja ekološke mreže koja se nalaze u radijusu od 20 kilometara.

Utjecaj na Područja očuvanja nizačajna za vrste i stanišne tipove (POVS)

Obuhvat zahvata se velikim dijelom nalazi unutar POVS HR2001373 Lisac. Unutar POVS HR2001373 Lisac javljaju se dvije ciljne vrste (planinski žutokrug i žuti mukač). Prema istraživanjima (Jelić 2016., Kuljerić 2010.) obje ciljne vrste su pronađene na širem području obuhvata zahvata, dok na području obuhvata zahvata na sjeverozapadnom dijelu zabilježena je prisutnost žutog mučaka na području postojećeg potoka. S obzirom na to da je ciljna vrsta žuti mukač prisutna, tijekom izgradnje planiranih vjetroelektrana moguć je utjecaj uznemiravanja te oštećivanja i devastacije nastambi i pogodnih staništa za navedenu ciljnu vrstu žabe. Također, zbog izgradnje VA i pristupnih putova doći će do trajnog zauzeća travnjačkih staništa pogodnih za vrstu planinski žutokrug unutar područja EM. Do potencijalno nešto veće površine zauzeća staništa doći će privremeno tijekom izgradnje, no ono će biti kratkotrajno, a na svim manipulativnim površinama koje se više neće upotrebljavati, ako se pravilno saniraju (po potrebi treba zasaditi autohtonu vegetaciju), stanište će se obnoviti. Stoga se utjecaj tijekom izgradnje, uz primjenu mjera ublažavanja, može zanemariti. Moguć je utjecaj uznemiravanja i oštećivanja ili uklanjanje nastambi te stradanja planinskog žutokruga pri naletu vozila tijekom i nakon izgradnje. S obzirom na to da je trajanje radova pri izgradnji ograničeno, a promet pristupnim cestama rijedak, negativan utjecaj uznemiravanja i stradanja smatra se prihvatljivim. Kako bi se izbjegao neprihvatljiv utjecaj, radove pri izgradnji se preporuča izvoditi od sredine rujna do kraja travnja, tj. izvan sezone razmnožavanja.

Ciljni stanišni tip područja HR2001373 Lisac je 62A0 Istočno submediteranski suhi travnjaci (Scorzoneretalia villosae) no na području obuhvata planirane vjetroelektrane nije evidentiran navedeni stanišni tip, stoga se ne očekuje niti utjecaj na isti.

Za neke ciljne vrste (velike zvijeri) pojava vjetroelektrane u prostoru uzrokuje utjecaj efekta barijere (IUCN 2021.). Velike zvijeri su ciljne vrste područja ekološke mreže Žốnica Plješivica i HR5000022 Park prirode Velebit koja su udaljena preko 18,7 km odnosno 1,2 km od obuhvata zahvata. Treba napomenuti da već postoje određene barijere u prostoru u smislu prometnica (državna cesta D1 i željeznička pruga). Tijekom korištenja, najznačajniji utjecaj vjetroelektrane je stradanje šišmiša uslijed kolizije s lopaticama vjetroagregata i barotraume. Takav utjecaj najviše će se očitovati kod ciljnih vrsta šišmiša područja ekološke mreže HR5000022 Park prirode Velebit, HR2001058 Lička Plješivica te HR2000632 Krbavsko polje. S obzirom na ekologiju ciljnih vrsta, ciljeve očuvanja, podzemne objekte značajne za ciljne vrste koji se nalaze unutar 20 km te udaljenosti koje ciljne vrste šišmiša mogu prijeći tijekom svakodnevnih aktivnosti, utjecaj kolizije ciljnih vrsta s lopaticama vjetroagregata je moguć te se ne može isključiti. S obzirom na udaljenost skloništa i osjetljivost na koliziju (Rodrigues i sur. 2014.), rizik od utjecaja na vrstu dugokrili pršnjak je visok, dok je za ostale vrste mali. Potencijalno, navedeni utjecaji mogu se ublažiti mjjerama ublažavanja prema „Guidelines for consideration of bats in wind farm projects Revision 2014“ (UNEP/EUROBATS 2014.).
Tijekom korištenja na šišmiše je moguć i utjecaj barijer, jer pojedine vrste šišmiša izbjegavaju vetroelektrane (Bach i Rahmel 2004.). Obzirom na to da šišmiši migriraju rutama koje ovise o reljefnim, stanišnim i krajobraznim karakteristikama, na temelju dostupnih podataka ne može se procijeniti nalaze li se planirane lokacije vetroagregata na migracijskoj rutini nekih ciljnih vrsta šišmiša te se ne može isključiti značajni utjecaj.

Utjecaj na Područja očuvanja značajna za ptice (POP)

Obuhvat planirane VE se ne nalazi unutar Područja očuvanja značajna za ptice, a najbliža su područja HR1000021 Lička krška polja i HR1000022 Velebit udaljena preko oko 4,3 odnosno 0,6 km. S obzirom na zastupljenja staništa unutar obuhvata zahvata moguća je prisutnost ciljnih vrsta kao što su vrste kamenjarskih pašnjaka i travnjaka, jarebica kamenjarka, primorska trepteljka, rusi svračak, ševa krunica, pjegava grmuša, čukavica, kratkoprsta ševa, sivi svračak, velika ševa; grabljivice koje navedeno područje mogu koristiti za lov suri orao, zmijar, eja strnjarica, eja močvarica, eja livadarka, crvenonoga vjetruša, bjelonokta vjetruša i škanjac osaš te noćno aktivne vrste ušara i leganj. Ostale ciljne vrste, vodarice i vrste vezane za kultivirane površine, moguće su na području obuhvata zahvata u vrijeme sezone migracija ili tijekom lokalnih disperzija.

Tijekom izgradnje vjetroelektrane moguć je utjecaj uznemiravanja ciljnih vrsta. Utjecaj će se očitovati u vidu buke i onečišćenja zbog emisije prašine i spušnih plinova tijekom rada mehanizacije, no bit će privremenog karaktera.

Za ciljne vrste ptica područja ekološke mreže pojava vetroelektrane u prostoru uzrokuje utjecaj efekta barijer (IUCN 2021.). Tako ciljne vrste koje potencijalno gнежde na području obuhvata zahvata, izgradnjom vjetroelektrane dislocirat će svoja gnejzda dalje od samih vetroagregata. Ciljne vrste koje područje obuhvata zahvata mogu koristiti za lov (grabljivice, sovke, noćne ptice), izbjegavat će šire područje oko vetroagregata. Također, za ostale ciljne vrste koje područje obuhvata zahvata koriste kao migracijske rute, postoje mogućnosti pomicanja uobičajene rute.

Uz efekt barijere, moguć je i utjecaj kolizije i stradavanja jedinki ciljnih vrsta ptica s lopaticama vetroagregata. Takav utjecaj najznačajniji je za male pjevice, grabljivice, migratorne vrste te noćno aktivne vrste. Zbog blizine poznatih teritorija surogo orla mogućnost utjecaja kolizije ciljne vrste surogo orla ne može se isključiti, jer se ne može isključiti mogućnost da područje zahvata koriste kao lovo područje. U Hrvatskoj je evidentiran slučaj stradavanja od lopatica vetroagregata obilježene subadultne jedinice surogo orla, čime se smanjuje mogućnost sparivanja jedinki, a posljedica toga je i trend smanjenja populacije suroh orlova u Hrvatskoj, zbog čega kolizija s vetroagregatima može imati potencijalno značajan negativan utjecaj (Čulig i sur. 2017.).

Zbog značajki zahvata te ciljeva očuvanja najbližih područja ekološke mreže, ne može se isključiti samostalan utjecaj zahvata na cjelovitost i ciljeve očuvanja područja ekološke mreže. Područje zahvata preklapa se s teritorijem suroga orla, čijim stradavanjem od lopatica vetroagregata utjecaj na populaciju suroga orla se ne može isključiti. Isti se potencijalno može smanjiti primjenom mjera ublažavanja prema "Mitigating biodiversity impacts associated with solar and wind energy development“ (IUCN 2021.).

Osim utjecaja kolizije ciljnih vrsta ptica s vetroagregatima, na vetroelektranama je moguć utjecaj kolizije s kablovima naponske mreže. S obzirom da je Idejinim rješenjem planirano ukopavanje interne kabelske, utjecaj kolizije s kablovima može se isključiti.
5.5.2. Skupni (kumulativni) utjecaji zahvata na ekološku mrežu

Planirani zahvat se nalazi unutar područja ekološke mreže POVS HR2001373 Lisac te na udaljenosti manjoj od 1 km od područja ekološke mreže POVS HR5000022 Park prirode Velebit i POP HR1000022 Velebit na jugu, zatim manje od 5 km od područja ekološke mreže HR2001253 Poštak na jugu i HR2001398 Dabašnica – Srebrenica zapadno od planiranog zahvata te oko 7 km od područja POVS HR2001268 Otuča na istoku. Lokacija planirane vjetroelektrane VE Ljut nalazi se na području Općine Gračac unutar Zadarske županije unutar prostora predviđenog za obnovljive izvore, prema Prostornom planu Zadarske županije (2014.) (Slika 5.5-1).

Analizom važeće prostorno-planske dokumentacije i procedura Procjene utjecaja zahvata na okoliš i Ocjeni po potrebi procjene utjecaja zahvata na okoliš sagledani su mogući kumulativni utjecaji na ekološku mrežu iz perspektive planiranog zahvata. U obzir su uzeti svi postojeći i planirani elektroenergetski objekti na širem području zahvata (radius 5 km od granice zahvata) kao što su vjetroelektrane, sunčane elektrane i dalekovodi. Dodatno su sagledani i svi postojeći i planirani izvori obnovljive energije na većem širem području zahvata (radius 15 km od granice zahvata) te su prikazani u tablici (Tablica 5.5-1) i na slici (Slika 5.5-1).

Tablica 5.5-1 Prikaz postojećih i planiranih zahvata na širem području zahvata (15 km) prema PP Zadarske županije

<table>
<thead>
<tr>
<th>Vrsta zahvata</th>
<th>Naziv</th>
<th>Udaljenost od zahvata</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>vjetroelektrana</td>
<td>Kuk</td>
<td>1,2 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Sedlo</td>
<td>0,9 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Mazin</td>
<td>11 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Otrić</td>
<td>Uz jugoistočnu granicu</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Bruveno</td>
<td>8,3 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Zadar 6P (Velika Popina)</td>
<td>Uz južnu granicu zahvata</td>
<td>Postojeće (proširenje)</td>
</tr>
<tr>
<td>dalekovod</td>
<td>DV 220 kV TS Brinje-TS Konjsko</td>
<td>350 m J</td>
<td>Postojeće</td>
</tr>
<tr>
<td>dalekovod</td>
<td>TS Gračac-TS Lički Osik (D 110 kV)</td>
<td>6 km Z</td>
<td>Postojeće</td>
</tr>
<tr>
<td>dalekovod</td>
<td>TS Gračac-TS Velika Popina (D 110 kV)</td>
<td>350 m J</td>
<td>Postojeće</td>
</tr>
<tr>
<td>dalekovod</td>
<td>TS Gračac-TS Srb (D 35 kV)</td>
<td>Unutar obuhvat (istočni dio zahvata)</td>
<td>Postojeće</td>
</tr>
</tbody>
</table>

*Masnim slovima su označeni zahvati koji su postojeći ili imaju Rješenje Ministarstva gospodarstva i održivog razvoja

Unutar šireg područja zahvata (15 km), prema dostupnim podacima sa stranice Ministarstva gospodarstva i održivog razvoja (MINGOR), trenutno se nalazi postojeća vjetroelektrana VE Zadar 6P (Velika Popina) (uz južnu granicu zahvata) na kojoj je još planirano i proširenje te je u planu izgradnja još četiri VE: Kuk (1,2 km SZ), Sedlo (0,9 km SZ), Otrić (uz jugoistočnu granicu), Bruveno (8,3 km SZ) i Mazin (11 km SZ). Njihovom izgradnjom te izgradnjom planirane vjetroelektrane doći će do kumulativnog utjecaja gubitka pogodnog za određene ciljne vrste obližnjih područja ekološke mreže. Zahvat se planira na području ekološke mreže (HR2001373 Lisac) koje je prioritetno stanište za očuvanje vrsta planinski žutokrug i žuti mukač, vrste za koje se navodi da su pod pritiskom zbog utjecaja izgradnja vjetroelektrana.

Izgradnjom planiranih i prisutnošću postojećih zahvata, moguć je utjecaj efekta barijere, jer se stvaraju značajne promjene u zračnom prostoru pticama i šišmišima (Detaljnije opisano u poglavlju 4.3 Utjecaj na...
Bioraznolikost. Također je izgradnjom vjetroelektrana moguć utjecaj efekta barijere i na velike zvijeri (IUCN 2021.). No, životinje koje koriste navedeno područje, imat će i okolno područje za migracije i lokalne disperzije.

Drugi utjecaj je stradavanje ciljnih vrsta ptica i šišmiša u vidu kolizije s vjetroagregatima i njihovim ulijetanjem u rotore vjetroagregata i slično. Takav utjecaj najviše će se očitovati kod ciljnih vrsta šišmiša područja ekološke mreže HR5000022 Park prirode Velebit, HR2001058 Lička Plješivica te HR2000632 Krbavsko polje. S obzirom na ekologiju ciljnih vrsta, ciljeve očuvanja, podzemne objekte značajne za ciljne vrste koji se nalaze unutar 20 km te udaljenosti koje ciljne vrste šišmiša mogu prijeći tijekom svakodnevnih aktivnosti, utjecaj kolizije ciljnih vrsta s lopaticama vjetroagregata je moguć te se ne može isključiti. S obzirom na postojeće vjetroelektrane i planirani broj agregata (50), očekuje se i utjecaj nakon izgradnje planirane VE Ljut. Svakako je bitno razmotriti i način primjene mjera: "Guidelines for consideration of bats in wind farm projects Revision 2014" (UNEP/EUROBATS, 2014.) te prema „Mitigating biodiversity impacts associated with solar and wind energy development“ (IUCN 2021.).
Slika 5.5-1 Prikaz planiranih i postojećih zahvata prema PPU Zadarske županije
5.5.3. Zaključak o utjecaju zahvata na ekološku mrežu

Kako se planirani zahvat nalazi na području ekološke mreže POVS HR2001373 Lisac, doći će do određenih gubitaka dijela pogodnog staništa za planinskog žutokruga i žutog mukača, ciljne vrste toga POVS područja ekološke mreže. Tijekom izgradnje doći će do uznemiravanja, uništavanja nastambi i potencijalnog stradavanja jedinki navedenih vrsta, ali taj utjecaj će biti kratkotrajan i lokaliziran.

Izgradnjom vjetroelektrane moguće je utjecaj efekta barijere na velike zvijeri (IUCN 2021.) zbog blizine drugih područja ekološke mreže, no treba spomenuti i već postojeće barijere u smislu prometnica (državna cesta D1, županijska cesta Ž5230, željeznička pruga M604).

Pojava vjetroelektrane u prostoru uzrokuje utjecaj efekta barijere na ptice i šišmiše, jer se stvaraju značajne promjene u zračnom prostoru. Izgradnja ovoga zahvata mogla bi pridonijeti skupnom negativnom utjecaju na populacije ptica i šišmiša što nastanjuju ovo područje. Za šišmiše, za koje su pri migracijama bitne karakteristike mikrolokacija vjetroagregata, na temelju postojećih podataka značajan utjecaj se ne može isključiti.

Tijekom korištenja, najznačajniji utjecaj vjetroelektrane je stradavanje ptica i šišmiša uslijed kolizije s lopaticama vjetroagregata i barotraume. S obzirom na postojeće podatke, ekologiju ciljnih vrsta, ciljeve očuvanja, blizinu podzemnih objekata značajnih za ciljne vrste šišmiša koji se nalaze unutar 20 km od zahvata te udaljenosti koje ciljne vrste mogu prijeći tijekom svakodnevnih aktivnosti, utjecaj kolizije ciljnih vrsta s lopaticama vjetroagregata je moguće te se ne može isključiti. Potencijalno, navedeni utjecaj može se ublažiti mjerama ublažavanja.

5.6. Utjecaj na krajobrazne značajke

Tijekom izgradnje

Tijekom pripreme i izgradnje doći će do izravnog utjecaja na fizičku strukturu krajobraza trajnim uklanjanjem razvijene vegetacije na parceli planirane vjetroelektrane te prilikom proširenja postojećih putova i izgradnje novog u svrhu pristupa vjetroagregatima. Međutim, s obzirom na to da se planirani zahvat nalazi većinom na golom kršu, u blizini su krški pašnjaci i nema područja s visokom vegetacijom, neće doći do značajnijeg negativnog utjecaja. Razmatrana lokacija za planiranu vjetroelektranu nalazi se na raščlanjenom reljefu, što uvjetuje promjene morfologije terena tijekom izgradnje pristupa ceste i platoa vjetroagregata. Tijekom izgradnje moguće je negativan utjecaj na boravišne kvalitete krajobraza zbog prisutnosti strojeva i građevinskog materijala. Iako, uzevši u obzir privremenost radova i malu gustoću naseljenosti okolnog područja, neće doći do značajnijeg negativnog utjecaja.

Prepoznate utjecaje moguće je ublažiti tako da se nakon završetka radova ukloni višak materijala te saniraju sve privremeno korištene površine kako bi se vratile u stanje što sličnije onom kakvo je bilo prije početka izgradnje.

Tijekom korištenja

Navedene promjene fizičke strukture krajobraza dovest će do izravnih i trajnih promjena u karakteru i vizualnoj percepciji krajobraza tijekom korištenja zahvata. Što se tiče samog vizualnog utjecaja planirane vjetroelektrane, postoji nekoliko gledišta. Vjetroagregati su vertikalne strukture koje se ne mogu ni na koji način zakloniti. Unose rotacijsko kretanje u statičan krajobraz čime privlače pogledu i time se povećava njihova vidljivost što im se više približavamo. Uzevši to u obzir, planirani zahvat je vidljiv s državne ceste D1, Gračac – Knin, i ostalih lokalnih prometnica te iz naselja Velika Popina. S druge strane, tijekom vožnje
Izgradnja vjetroelektrane Ljut

se pogledi izmjenjuju, ponekad su zakoljeni zbog raščljanjenosti reljefa i nisu fokusirani isključivo na vjetroagregate pa je utjecaj minimalan.

Ako uzmemo u obzir prisutnost već postojećih vjetroagregata u neposrednoj blizini ovog zahvata te u cijeloj Zadarskoj županiji, na koje se lokalno stanovništvo već naviklo te da se radi o rijetko naseljenom području, može se očekivati izvjestan negativan utjecaj na vizualne karakteristike krajobraza što se može detaljnije analizirati kod izrade daljnje dokumentacije.

5.7. Utjecaj na kulturno-povijesnu baštinu

Tijekom izgradnje

Prilikom pregleda dostupne dokumentacije, na prostoru predviđenom za izgradnju vjetroelektrane Ljut, nije utvrđeno postojanje registrirane, zaštićene ni evidentirane materijalne kulturne baštine. Najbliže kulturno dobro upisana u Registar kulturnih dobara Republike Hrvatske, Z-6024 Crkva Sv. Ilije u naselju Velika Popina, nalazi se na udaljenosti od oko 1 km.

Obzirom na vrstu opisanog projektnog zahvata i udaljenost od zaštićenih kulturnih dobara, a uz pretpostavku da se planirani zahvat izvodi sukladno Zakonu o zaštiti i očuvanju kulturnih dobara, negativan utjecaj na kulturnu baštinu može se isključiti. U slučaju da se prilikom izvođenja radova nađe na kulturno-povijesnu baštinu (materijalnu i nematerijalnu) te arheološke nalaze, potrebno je odmah obustaviti radove i obavijestiti nadležni Konzervatorski odjel u Zadru te postupiti sukladno Zakonu o zaštiti i očuvanju kulturnih dobara (NN 69/99, 151/03, 157/03, 87/09, 88/10, 61/11, 25/12, 136/12, 157/13, 152/14, 44/17, 90/18, 32/20, 62/20).

Tijekom korištenja

Ne očekuje se utjecaj na kulturnu baštinu tijekom korištenja vjetroelektrane Ljut.

5.8. Utjecaj na gospodarske djelatnosti

5.8.1. Šumarstvo

Tijekom pripreme i izgradnje

Tijekom pripreme i izvođenja svakog građevinskog (zemljanog) zahvata primarni negativni utjecaj na šumske ekosustave i šumarstvo je trajni gubitak površina pod šumskom vegetacijom i šumskog zemljišta. Projektom je predviđena gradnja 50 vjetroagregata sa pripadajućim temeljima, platoima, elektro i DTK kabelima te pristupnih puteva koja će se odvijati u sedamnaest faza. Obzirom da je područje zahvata planirano velikim dijelom na šumskogospodarskom području, što na neobraslom što na obraslom šumskom zemljištu, na područjima izgradnje temelja vjetroagregata doći će do zauzeća odnosno prenajmene šumskih površina.

Zahvatom je predviđeno što je više moguće korištenje postojećih pristupnih putova, što će smanjiti utjecaj u smislu zauzeća površina. Gdje je potrebno provesti će se rekonstrukcija ili prilagodba trase šumske ceste u suradnji sa Hrvatskim šumama, na prihvatljiv i racionalan način, čime je negativan utjecaj moguće umanjiti. Izgradnjom zahvata će također doći do fragmentacije i degradacije šumskih ekosustava otvaranjem novih šumskih rubova. Također, prilikom gradnje uslijed rukovanja lako zapaljivim materijalima
i alatima koji izazivaju iskrenje postoji opasnost od nastanka šumskog požara. Pridržavanjem svih standardnih mjera zaštite od požara, utjecaj se može isključiti.

Provođenjem općih mjera zaštite koje uključuju pravilnu organizaciju gradilišta kojom će se osigurati racionalno i učinkovito kretanje građevinske mehanizacije, privremeno skladištenje materijala na površinama bez vegetacije, očuvanje drveća gdje god je to moguće te korištenje postojećih putova, utjecaj zahvata može se umanjiti.

Tijekom korištenja

Tijekom korištenja zahvata, negativan utjecaj se ne očekuje, izuzev nepredviđenih situacija koje se mogu pojaviti, a koje mogu rezultirati nastankom požara ili onečišćenjem okolnog šumskog tla.

5.8.2. Divljač i lovstvo

Tijekom izgradnje

Tijekom izvođenja radova postojat će privremeni negativni utjecaj zbog kretanja ljudi i strojeva te buke koji mogu uznemiravati divljač, a osobito ukoliko se radovi izvode za vrijeme reprodukcijskog ciklusa. Divljač će zbog toga migrirati i napuštati područje u kojima se izvode radovi. Zbog migracije divljači i smanjenja njezinog životnog prostora zauzimanjem nove površine postoji mogućnost da će posredno doći do nešto većih šteta na poljoprivrednim kulturama na mjestima koja nisu u blizini izvođenja radova.

Zakonom o lovstvu (Narodne novine, broj: 99/18, 32/19 i 32/20), člankom 55. propisano je da je zabranjeno loviti i uznemiravati ženu dlakave divljači kad je visoko bređa ili dok vodi sitnu mladunčad. Zabranjeno je loviti i uznemiravati pernatu divljač tijekom podizanja mladunčadi ili različitih stadija razmnožavanja.

Tijekom korištenja

Izgradnjom vjetroelektrane i pristupnih putova do 50 planiranih vjetroagregata doći će do gubitka lovnoproduktivne površine. Isto tako sam rad vjetroagregata neće predstavljati određen negativan utjecaj na divljač i lovstvo tijekom korištenja zbog buke vjetroagregata. Međutim, za očekivati je da će se divljač priviknuti na prisustvo istog zvuka.

5.9. Kvaliteta zraka i utjecaji

5.9.1. Kvaliteta zraka

Navedeni zahvat izgradnje VE Ljut smješten je na području Općine Gračac u Zadarskoj županiji koja prema Zakonu o zaštiti zraka (NN 127/19) i Uredbi o određivanju zona i aglomeracija prema razinama onečišćenosti zraka na teritoriju Republike Hrvatske (NN 01/14) pripada zoni Dalmacija HR 5.

Ocjena kvalitete zraka

Ocjena onečišćenosti zona i aglomeracija Republike Hrvatske (ocjena sukladnosti s okolišnim ciljevima) se temelji na rezultatima mjerenja na utvrđenim mjernim mjestima na postajama državne mreže za trajno praćenje kvalitete zraka te metodi objektivne procjene. Prema zadnjem izvješću o praćenju kvalitete zraka na području Republike Hrvatske za 2019. godinu, Ministarstvo gospodarstva i održivog razvoja, listopad 2020., u 2019. godini, zona Dalmacija (HR 5) ocijenjena je kao sukladna s graničnom vrijednostima odnosno ciljnim vrijednostima za onečišćujuće tvari SO₂, NO₂, CO, lebdeće čestice PM₁₀, PM₂,₅, benzen i metale Pb, Cd, Ni i As u PM₁₀ i B(a)P (benzo(a)piren) u PM₁₀ za zaštitu zdravlja ljudi. Zona Dalmacija ocijenjena je kao nesukladna s ciljnom vrijednošću za 8-satni pomični prosjek koncentracija O₃.
Izgradnja vjetroelektrane Ljut

(usrednjeno na tri godine) s obzirom na zaštitu zdravlja ljudi (II kategorija kvalitete zraka). Zona Dalmacija je nesukladna s ciljnom vrijednošću za AOT40 obzirom na zaštitu vegetacije.

Na području Zadarske županije kvaliteta zraka prati se na dvije mjerne postaje državne mreže za trajno praćenje kvalitete zraka Polača (Ravni Kotari) i Vela straža (Dugi otok), obje ruralne pozadinske mjerne postaje.

<table>
<thead>
<tr>
<th>Zona</th>
<th>Županija</th>
<th>Mjerna mreža</th>
<th>Mjerna postaja</th>
<th>Onečišćujuća tvar</th>
<th>Kategorija kvalitete zraka</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR 5</td>
<td>Zadarska županija</td>
<td>Državna</td>
<td>Polača (Ravni kotari)</td>
<td>PM$_{10}$ (auto)</td>
<td>I* I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM$_{2.5}$ (auto)</td>
<td>I* I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ozon O$_3$</td>
<td>II** II**</td>
</tr>
</tbody>
</table>

* uvjetna kategorizacija, obuhvata podataka od 75% do 90%

** obuhvata podataka ispod 75% druga kategorija zbog prekoračenja dozvoljenog broja satnih i/ili dnevnih graničnih/ciljnih vrijednosti ili su mjerenja korištena kao indikativna

PM$_{10}$ (auto.) i PM$_{2.5}$ (auto.) - za obje onečišćujuće tvari napravljene su korekcije korekcijskim faktorima sukladno studijama ekvivalencije.

Izvor: Godišnja izvješća o praćenju kvalitete zraka na području Republike Hrvatske za 2020., 2019., 2018. i 2017. godinu

Emisije u zrak

Prema bazi podataka Registar onečišćavanja okoliša ROO, na užem području zahvata nema prijavljenih nepokretnih izvora emisija onečišćujućih tvari u zrak (Slika 5.9-1). Naj bliža naselja tj. sela i zaseoka koja se uglavnom sastoje od svega nekoliko kuća udaljena su oko 1500 m od lokacije planirane za izgradnju vjetroelektrane. Emisije koje su prisutne na ovom području su emisije iz uređaja za loženja u kućanstvima u ovim naseljima.
Slika 5.9-1. Položaj zahvata u odnosu na izvore emisija onečišćujućih tvari u zrak prijavljenih u bazu ROO, mjernu postaju za praćenje kvalitete zraka Polača (Ravni kotari) te najbliže ceste

Kvaliteta zraka na području zahvata

U blizini planirane vjetroelektrane nema nikakvih postrojenja, već samo manja naselja te prometnice koje predstavljaju izvore emisija onečišćujućih tvari u zrak, ali se može pretpostaviti da je kvaliteta zraka na ovom području I. kategorije.

5.9.2. Utjecaj na kvalitetu zraka tijekom izgradnje

Tijekom izgradnje vjetroelektrane i pojačanog prometa očekuje se nikakav ili minimalan utjecaj na kvalitetu zraka. Na ograničenom području javit će se emisije prašine u zrak i emisije štetnih tvari (dušikovi oksidi, ugljikov monoksid, ugljikov dioksid, sumporov dioksid i čestice) putem ispušnih plinova građevinskih i transportnih strojeva s motorima s unutarnjim izgaranjem.

Količina prašine koja će se podizati s površine gradilišta ovisi o intenzitetu i vrsti radova, korištenim radnim strojevima, kao i o meteorološkim prilikama na užem području gradilišta. Ti utjecaji lokalnog su karaktera i kratkotrajni te se uz mjere zaštite i uobičajene postupke dobre prakse pri građenju, mogu svesti na najmanju moguću mjeru.

Uzvjesi u obzir vremensku i prostornu ograničenost utjecaja, karakteristike samog zahvata i lokacije, utjecaj na kvalitetu zraka tijekom izvođenja radova na izgradnji vjetroelektrane se procjenjuje kao vrlo mali, a nakon završetka radova utjecaj u potpunosti prestaje.
5.9.3. Utjecaj na kvalitetu zraka tijekom korištenja

Prilikom samog rada vjetroelektrane odnosno transformacije energije vjetra u električnu energiju, nema emisija stakleničkih plinova.

Korištenjem obnovljivih izvora energije poput vjetra umanjuju se potrebe za energijom proizvedenom iz fosilnih goriva te se na taj način doprinosi smanjenju emisija stakleničkih plinova. Planirana ukupna snaga elektrane iznosi do 300 MW. Emisije stakleničkih plinova koje potječu od proizvodnje električne energije u Republici Hrvatskoj izračunavaju se na temelju specifičnog faktora emisije po ukupno proizvedenoj energiji koji varira od godine do godine. Prosječni specifični faktor u razdoblju 2012.-2017. godine iznosio je 0,148 kg/kWh, a kojim se izražava količina proizvedenog CO₂ na mjestu proizvodnje električne energije izraženog u kg CO₂ po proizvedenom kWh električne energije, uzimajući u obzir i gubitke u električnoj mreži (Izvor: Energija u Hrvatskoj, Godišnji energetski pregled 2018, MZOЕ, prosinac 2019.).

Procjena proizvodnje vjetroelektrane VE Ljut iznosi u prosjeku 788 GWh na godišnjoj razini. Navedena proizvodnja obnovljive energije smanjila bi indirektnu godišnju emisiju CO₂ za proizvedenu električnu energiju za oko 116,6 kt godišnje.

5.10. Klima – sadašnje stanje

5.10.1. Klima općenito i klasifikacije

Kako bi klime pojedinih krajeva mogle biti uspoređive, uvedeno je nekoliko klasifikacija od kojih su najpoznatije, a time i najčešće korištene, Köppenova i Thorntwaitova klasifikacija.

5.10.1.1. Klasifikacija prema Köppenu

Köppenova klasifikacija se temelji na točno određenim godišnjim i mjesečnim vrijednostima temperature i padalina. U područjima bliže ekvatoru važna je srednja temperatura najhladnijeg mjeseca, a u područjima bliže polovima srednja temperatura najtoplijeg mjeseca. Veliku ulogu u klasifikaciji klime ima i vegetacija.

Promatrano područje, prema Köppenu, je na granici Cfb tipa klime – umjereno topla i vlažna s toplim ljetom i Dfb – vlažna šumska klime s toplim ljetima.

Slika 5.10-1. Köppenovi tipovi klime

Klasifikacija C

Srednja temperatura najhladnijeg mjeseca nije niža od -3°C, a najmanje jedan mjesec ima srednju temperaturu višu od 10 °C. Bitna karakteristika ovih klima je postojanje pravilnog ritma godišnjih doba budući da se većinom nalaze u umjerenim pojasevima. Nema neprekidno visokih ili neprekidno niskih temperatura, kao što ne postoje ni dugi periodi suše ni kišnih periodi u kojima padne gotovo sva godišnja količina kiše. Ljeta su umjerena, a bliže ekvatoru topla, ali ne vruća u pravom smislu riječi. Zime su blage, a samo povremeno, pojavljuju se vrlo hladni vjetrovi.

Klasifikacija Cfb – Umjereno topla vlažna klima s toplim ljetom

Naziva se i klima bukve. Najveći dio krajeva s ovom klimom nalazi se pod utjecajem ciklona koji dolaze s oceanu i kreću se prema istoku, tako da raspodjela padalina u prostoru i vremenu najviše ovisi o njima – obalni pojasevi imaju najviše padalina u zimskom dijelu godine, a u unutrašnjosti u toplom dijelu godine.

Klasifikacija D

Najhladniji mjesec ima temperaturu nižu od -3° C, a temperatura najtoplijeg mjeseca viša je od 10° C. Zime su duge i hladne, a ljeta mogu biti čak i vruća pa godišnja temperaturna amplituda može preći i 30° C.

Klasifikacija Dfb – Vlažna borealna klima s toplim ljetom
Najhladniji mjesec ima temperaturu nižu od -3°C, a temperatura najtoplijeg mjeseca viša je od 10°C. Zime su duge i hladne, a ljeta mogu biti čak i vruća pa godišnja temperaturna amplituda može preći i 30°C. Srednja temperatura najtoplijeg mjeseca niža je od 22°C.

5.10.1.2. Klasifikacija prema Thornthwaitu

5.10.2. Temperatura zraka

Temperatura zraka, u meteorologiji, je temperatura u prizemnom sloju atmosfere koja nije uvjetovana toplinskim zračenjem tla i okoline ili Sunčevim zračenjem. Mjeri se na visini od 2 metara iznad tla. Temperatura zraka mijenja se tijekom dana i tijekom godine. Dnevni hod ovisi o dobu dana i veličini i vrsti naoblake i može se znatno promijeniti pri naglim prodorima toploga ili hladnoga zraka ili pri termički jako izraženim vjetrovima, na primjer fen ili buri. Zbog utjecaja topline tla, uz samo tlo temperatura zraka naglo se mijenja, pa razlika između temperature zraka na 2 metra visine i one pri tlu može iznositi i do 10°C.

Temperatura je jedna od najvažnijih klimatskih količina, a mjesečni i godišnji prosječni vrijednosti uglavnom se uzimaju za opisivanje klime. Osim toga, postoje zanimljive izvedene količine kao što su, na primjer, broj hladnih dana, broj toplih dana i tople noći, broj dana kada temperatura nije pala ispod 20°C, broj Hajli dana itd.

Tablica 5.10-1. VE Ljut, srednje temperature i varijable koje su dobivene iz temperature

<table>
<thead>
<tr>
<th>Varijabla/mjesec</th>
<th>Siječanj</th>
<th>Travanj</th>
<th>Srpanj</th>
<th>Listopad</th>
<th>godišnje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura °C</td>
<td>-4/-1</td>
<td>4/8</td>
<td>14/17</td>
<td>7/10</td>
<td>3/6</td>
</tr>
<tr>
<td>Hladni dani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120-160</td>
</tr>
<tr>
<td>Topli dani</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><20</td>
</tr>
<tr>
<td>Tople noći</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><1</td>
</tr>
</tbody>
</table>

5.10.3. Oborina

Oborina je voda koja u tekućem ili čvrstom stanju pada iz oblaka na tlo ili nastaje na tlu kondenzacijom, odnosno odlaganjem (depozicijom) vodene pare iz sloja zraka koji je u izravnom dodiru s tлом (hidrometeori). Zajedno s česticama koje padajući ne dopiru do tlo, koje su raspršene u atmosferi ili vjetrom uzdignute sa Zemljine površine, oborine čine skupinu hidrometeora. Oborina kao meteorološka
Izgradnja vjetroelektrane Ljut

pojava nastaje kao rezultat mnogih fizičkih procesa koji uključuju praktično sve meteorološke elemente i pojave.

Tablica 5.10-2. VE Ljut, razdioba oborine

<table>
<thead>
<tr>
<th>Varijabla/mjesec</th>
<th>Zima</th>
<th>Proljeće</th>
<th>Ljeto</th>
<th>Jesen</th>
<th>Godišnje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oborina mm</td>
<td>600-900</td>
<td>500-700</td>
<td>300-500</td>
<td>500-800</td>
<td>2000-3000</td>
</tr>
<tr>
<td>Dana s oborinom >= 1mm</td>
<td>140-160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dana sa snježnim pokriv. >= 1cm</td>
<td>130-170</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.10.4. Vjetar

Vjetar je jedna od najpromjenjivijih meteoroloških veličina, ali frekvencije brzina i smjerovi mogu govoriti o klimi na nekom području. Zato klimatologija koristi takozvane ruže vjetra.

Slika 5.10-2 Ruža vjetrova, Gospić, 2000.−2019.

Iz gornje slike je vidljivo kako tim područjem dominiraju vjetrovi iz sjevernog i jugoistočnog kvadranta. Najveća brzina vjetra u Gospiću u tom periodu izmjerena je 22. prosinca 2003. u 6:00, a bila je 16 m/s.
5.11. Klimatske promjene i utjecaji

5.11.1. Klimatske promjene

5.11.1.1. Rezultati numeričkog modeliranja klimatskih promjena

Stanje klime za razdoblje 1971.-2000. (referentno razdoblje) i klimatske promjene za buduća vremenska razdoblja 2011.-2040. i 2041.-2070. analizirani su za područje Hrvatske na osnovi rezultata numeričkih integracija regionalnim klimatskim modelom (RCM) RegCM. Prostorna domena integracija zahvaćala je šire područje Europe (Euro-CORDEX domena) uz korištenje rubnih uvjeta iz četiri globalna klimatska modela (GCM), Cm5, EC-Earth, MPI-ESM i HadGEM2, na horizontalnoj rezoluciji od 50 km. Klimatske promjene u budućnosti modelirane su prema RCP4.5 scenariju IPCC-a, po kojem se očekuje umjereni porast stakleničkih plinova do konca 21. stoljeća. Rezultati numeričkih integracija prikazani su kao srednjak ansambla (ensemble) iz četiri individualne integracije RegCM modelom.

U čitavoj Hrvatskoj očekuje se u budućnosti porast srednje temperature zraka u svim sezonama. U razdoblju 2011.-2040. taj bi porast mogao biti od 0.7 do 1.4 °C; najveći u zimi i u ljeto, a nešto manji u proljeće. Najveći porast temperature očekuje se u primorskim dijelovima Hrvatske. Do 2070. najveći porast srednje temperature zraka, do 2.2 °C, očekuje se u primorskim dijelovima u ljeto i jesen, a nešto manji porast očekuje se u kontinentalnim krajevima u zimi i proljeće. Slično srednjoj dnevnoj temperaturi očekuje se porast srednje maksimalne i srednje minimalne temperature. Do 2040. najveći porast bi za maksimalnu temperaturu iznosio do 1.5 °C, a za minimalnu temperaturu do 1.4 °C; do 2070. projicirani porast maksimalne temperature bio bi 2.2 °C, a minimalne do 2.4 °C. Očekivane buduće promjene u ukupnoj količini oborine nisu jednoznačne kao za temperaturu. U razdoblju 2011.-2040. očekuje se manji porast količine oborine u zimi i u većem dijelu Hrvatske u proljeće, dok bi u ljeto i jesen prevladavalo smanjenje količine oborine. Ove promjene u budućoj klimi bile bi između 5 i 10% (u odnosu na referentno razdoblje), tako da ne bi imale značajniji utjecaj na godišnje prosjeke ukupne količine oborine. Do 2070. očekuje se daljnje smanjenje ukupne količine oborine u svim sezonama osim u zimi, a najveće smanjenje bilo bi do 15%. Najveća promjena, smanjenje do gotovo 50%, očekuje se za snježni pokrov u planinskim predjelima. Evapotranspiracija bi se povećala za oko 15% do 2070., a površinsko otjecanje bi se smanjilo do 10% u gorskim predjelima. Očekivana promjena sunčanog zračenja je 2-5%, ali je suprotnih predznaka: smanjenje u zimi i u proljeće, a povećanje u ljeto i jesen. Maksimalna brzina vjetra bi se smanjila do 10% u gorskim predjelima. Očekivana promjena sunčanog zračenja je 2-5%, ali je suprotnih predznaka:
Srednje temperature zraka u referentnoj (povijesnoj) klimi (1971.-2000.) općenito su nešto više u numeričkim integracijama na 12,5 km nego na 50 km. Ovo povećanje čini simulacije povijesne klime na finijoj horizontalnoj rezoluciji realističnijim jer su temperature bliže mjerenjima. U analiziranim RegCM simulacijama na 12,5 km, temperatura zraka na 2 m iznad tla se povećava u svim sezonama i za oba scenarija. Za razdoblje 2011.-2040. godine i scenarij RCP4.5, projekcije ukazuju na moguće zagrijavanje u zimi, proljeću i jeseni od 1 do 1.3 °C te ljeti u većem dijelu Hrvatske od 1.5 do 1.7 °C. Za razdoblje 2041.-2070. godine i isti scenarij, zagrijavanje u zimi, proljeću i jeseni iznosi od 1.7 do 2 °C te ljeti u većem dijelu Hrvatske od 2.4 do 2.6 °C. Iznimke za ljetnu sezonu čini istok Hrvatske i obalno područje sa zagrijavanjem nešto manjim od 2.5 °C.

Na srednjoj godišnjoj razini, srednjak ansambla RegCM simulacija na 12,5 km daje za razdoblje 2011.-2040. godine i oba scenarija mogućnost zagrijavanja od 1,2 do 1,4°C. Za razdoblje 2041.-2070. godine i scenarij RCP4.5 očekivano zagrijavanje je od 1,9 do 2°C. Za razdoblje 2041.-2070. godine godine i scenarij RCP8.5, projekcije ukazuju na mogućnost temperature od 2.4°C na krajnjem jugu do 2.6°C u većem dijelu Hrvatske. U obalnom području projicirani porast temperature je oko 2.5°C.

Za razliku od temperaturnih veličina, klimatske projekcije srednje ukupne količine oborine sadrže izražene razlike u iznosu i predznaku promjena u prostoru te pokazuju veću ovisnost o sezoni. Za razdoblje 2011.-2040. godine i scenarij RCP4.5, projekcije ansambla RegCM simulacija ukazuju na:

(1) moguće povećanje ukupne količine oborine tijekom zime na čitavom području Hrvatske (do 5% u središnjim dijelovima, od 5 do 10% na istoku i zaleđu obale te čak do 20% u nekim dijelovima obalnog područja);

(2) slabije izražen signal tijekom proljeća s promjenama u rasponu od -5% do 5%;

(3) izraženo smanjenje ukupne količine oborine ljeti u čitavoj Hrvatskoj: u većem dijelu Hrvatske od -20% do -10%, od -10 do -5% na sjevernom dijelu obale i od -5 do 0% na južnom Jadranu;
(4) promjenjiv signal tijekom jeseni u rasponu od -5 % do 5 % osim na području juga Hrvatske gdje ovdje analizirane projekcije ukazuju na smanjenje u rasponu od -10 do -5 %.

Za razdoblje 2041.-2070. godine su projicirane promjene sličnog iznosa i predznaka za sve sezone kao i u neposredno budućoj klimi (2011.-2040. godine), osim za jesen, gdje se javlja povećanje količina oborine u različitom postotku ovisno o dijelu Hrvatske.

Na srednjoj godišnjoj razini su promjene u ukupnoj količini oborine u rasponu od -5 do 5 % za oba buduća razdoblja te za oba scenarija. Dodatno, za područje Jadranskog mora te dijela obalnog područja, promjene na godišnjoj razini ukazuju na mogućnost porasta količine oborine u iznosu od 5 do 10 %.

Projekcije maksimalne brzine vjetra na 10 m iznad tla na 12,5 km rezoluciji modelom RegCM i uz pretpostavku scenarija RCP4.5 daju mogućnost uglavnom blagog porasta na području Hrvatske (maksimalno od 3 do 4 %). Iste simulacije daju najizraženije smanjenje brzine vjetra u zaleđu juga Dalmacije izvan područja Hrvatske (približno -10 %). Na srednjoj godišnjoj razini, projekcije za oba razdoblja (2011.-2040. godine, 2041.-2070. godine) te oba scenarija (RCP4.5 i RCP8.5) ukazuju na blage, gotovo zanemarive, promjene u rasponu od -1 % do 3 % ovisno o dijelu Hrvatske.

5.11.2. Utjecaj zahvata na klimatske promjene

Tijekom izgradnje

Utjecaja zahvata na klimatske promjene tijekom izgradnje nema. Ispušni plinovi iz transportnih vozila i građevinske mehanizacije neće utjecati na klimatske promjene jer su radovi privremeni i lokalni. S obzirom na cijeli životni vijek jedne vjetroelektrane i CO₂ emisije generatora nemjerljivo manje opterećuju okoliš, pa time pozitivno utječu na održivi razvoj i smanjenje antropogenog doprinosa klimatskim promjenama.

Tijekom korištenja

Prilikom samog rada vjetroelektrane odnosno transformacije energije vjetra u električnu energiju, nema emisija stakleničkih plinova.

Korištenjem obnovljivih izvora energije poput vjetra umanjjuju se potrebe za energijom proizvedenom iz fosilnih goriva te se na taj način doprinosi smanjenju emisija stakleničkih plinova. Planirana ukupna snaga elektrane iznosi do 300 MW. Emisije stakleničkih plinova koje potječu od proizvodnje električne energije u Republici Hrvatskoj izračunavaju se na temelju specifičnog faktora emisije po ukupno proizvedenoj energiji koji varira od godine do godine. Prosječni specifični faktor u razdoblju 2012. -2017. godine iznosio je 0,148 kg/kWh, a kojim se izražava količina proizведенog CO₂ na mjestu proizvodnje električne energije izraženog u kg CO₂ po proizvedenom kWh električne energije, uzmajući u obzir i gubitke u električnoj mreži (Izvor: *Energija u Hrvatskoj, Godišnji energetski pregled 2018, MZOE, prosinac 2019*).

Procjena proizvodnje vjetroelektrane VE Jesenice iznosi u prosjeku 788 GWh na godišnjoj razini. Navedena proizvodnja obnovljive energije smanjila bi indirektnu godišnju emisiju CO₂ za proizvedenu električnu energiju za oko 116,6 kt godišnje.
5.11.3. Utjecaj klimatskih promjena na zahvat

Utjecaj klimatskih promjena na predmetni zahvat procjenjuje se prema smjernicama za voditelje projekta: Kako povećati otpornost ranjivih ulaganja na klimatske promjene. Analizirana su četiri modula:

1. Utvrđivanje osjetljivosti projekta na klimatske promjene,
2. Procjena izloženosti opasnostima koje su vezane za klimatske uvjete,
3. Procjena ranjivosti i
4. Procjena rizika.

Inače se koristi sedam modula (ostala tri su: Utvrđivanje mogućnosti prilagodbe, Procjena mogućnosti prilagodbe i Integracija akcijskog plana prilagodbe u ciklus razvoja projekta) osim ako se kroz prva četiri utvrdi da ne postoji značajni rizik ili ranjivost predmetnog zahvata na klimatske promjene, kao što je i slučaj u ovom predmetnom zahvatu.

Modul 1. – Utvrđivanje osjetljivosti zahvata na klimatske promjene

Osjetljivost projekta utvrđuje se u odnosu na klimatske varijable i sekundarnih efekata ili opasnosti koje su vezane uz klimatske uvjete. Osjetljivost zahvata procjenjuje se kroz četiri glavne komponente:

- Postrojenja i procesi IN – SITU (sklop vjetrogeneratora: stup, lopatice, generator, električni vodovi itd),
- Ulaz (nije relevantno za ovaj projekt),
- Izlaz (električna energija),
- Transport (nije relevantno za ovaj projekt).

Osjetljivost na klimatske promjene

<table>
<thead>
<tr>
<th>Osjetljivost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visoka</td>
</tr>
<tr>
<td>Umjerena</td>
</tr>
<tr>
<td>Nema ili neznatna</td>
</tr>
</tbody>
</table>

U slijedećoj tablici ocjenjena je osjetljivost zahvata na klimatske promjene.

Tablica 5.11-1.Ocjena osjetljivosti zahvata na klimatske promjene

<table>
<thead>
<tr>
<th>Transport</th>
<th>Izlaz</th>
<th>Ulaz</th>
<th>Postrojenja i procesi in situ</th>
<th>Osjetljivost</th>
<th>Primarni efekti</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>Visitna komponenta izložena</td>
<td>Visoka</td>
<td>Povišenje srednje temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul 2. Procjena izloženosti opasnostima koje su vezane za klimatske uvjete

Nakon što se utvrdi osjetljivost zahvata, procjenjuje se izloženost istog na opasnosti koje su vezane za klimatske uvjete na lokaciji.

Procjena izloženosti zahvata na klimatske promjene obrađuje se za postojeće i buduće stanje na predmetnoj lokaciji i to za klimatske varijable i vezane opasnosti kod kojih postoji visoka ili srednja osjetljivost.

Izloženost

<table>
<thead>
<tr>
<th>Nema / nezna ta</th>
<th>Umjerena</th>
<th>Visoka</th>
</tr>
</thead>
</table>

2	Povišenje ekstremnih temperatura
3	Promjena u srednjaku oborine
4	Promjena u ekstremima oborine
5	Promjena srednje brzine vjetra
6	Promjena maksimalnih brzina vjetra
7	Vlažnost
8	Sunčevo zračenje

Sekundarni efekti

9	Promjena duljine sušnih razdoblja
10	Promjena razine mora
11	Promjena temperature mora
12	Dostupnost vode
13	Nevremena
14	Plavljenje morem
15	pH mora
16	Pješčane oluje
17	Ostale poplave
18	Obalna erozija
19	Erozija tla
20	Zaslanjivanje tla
21	Šumski požari
22	Nestabilnost tla/klizišta
23	Kvaliteta zraka
24	Urbani otoci topline
25	Kakvoća vode za kupanje
26	Promjena duljine godišnjih doba
Izgradnja vjetroelektrane Ljut

Modul 3. Procjena ranjivosti

Ako se smatra da postoji visoka ili srednja osjetljivost zahvata na određenu klimatsku varijablu ili opasnost, lokacija i podaci o izloženosti zahvata računaju se u procjeni ranjivosti zahvata na klimatske promjene, na način:

\[V = S \times E \]

gdje je:
- \(V \) – ranjivost (engl. *vulnerability*)
- \(S \) – osjetljivost (engl. *sensitivity*)
- \(E \) – izloženost (engl. *exposure*)

Mogući rezultati za ranjivost projekta, ovisno o osjetljivosti i izloženosti prikazani su u tablici

Tablica 5.11-2. Procjena razine ranjivosti projekta

<table>
<thead>
<tr>
<th>Osjetljivost</th>
<th>Izloženost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nema</td>
<td>neznatna</td>
</tr>
<tr>
<td></td>
<td>Umjerena</td>
</tr>
<tr>
<td></td>
<td>Visoka</td>
</tr>
</tbody>
</table>

Značenje oznaka u boji:

Ranjivost

<table>
<thead>
<tr>
<th>Nema / neznatna</th>
<th>Umjerena</th>
<th>Visoka</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Ranjivost zahvata prikazana je u Tablici 5.11-3. za one parametre za koje je ranjivost umjerena ili visoka.
Tablica 5.11-3. Procjena razine ranjivosti

<table>
<thead>
<tr>
<th>Primarni efekti</th>
<th>Sadašnja ranjivost</th>
<th>Buduća ranjivost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Povišenje srednje temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Povišenje ekstremnih temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Promjena u ekstremima oborine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Promjene prosječne brzine vjetra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Povećanje maksimalne brzine vjetra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Vlažnost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Sunčeva zračenja</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sekundarni efekti		
9 Nevremena		
10 Nestabilnost tla/klizišta		
11 Promjena duljine godišnjih doba		

Modul 4. Procjena rizika

Na temelju procjene ranjivosti zahvata izrađuje se procjena rizika predmetnog zahvata na klimatske promjene. Faktori rizika određuju se Tablica 5.11-4. u nastavku:

Tablica 5.11-4. Legenda procjene rizika

<table>
<thead>
<tr>
<th>Pojavljivanje</th>
<th>Gotovo nemoguće</th>
<th>Malo vjerojatno</th>
<th>Moguće</th>
<th>Vrlo vjerojatno</th>
<th>Gotovo sigurno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posljedice</td>
<td>1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beznačajne</td>
<td>1</td>
<td>2</td>
<td>3 4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2</td>
<td>4</td>
<td>6 8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Umjerene</td>
<td>3</td>
<td>6</td>
<td>9 12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Velike</td>
<td>4</td>
<td>8</td>
<td>12 16</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Katastrofalne</td>
<td>5</td>
<td>10</td>
<td>15 20</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>
Procjena rizika napravljena je za one aspekte kojima je analizom ranjivosti utvrđena visoka ranjivost (Tablica 5.11-5).

U ovom predmetnom zahvatu to su požari:

Tablica 5.11-5. Procjena rizika predmetnog zahvata

<table>
<thead>
<tr>
<th>Ranjivost</th>
<th>PP, U/I</th>
<th>Nevremena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivo ranjivosti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulaž</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Izlaz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postrojenja i procesi IN-SITU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Opis</th>
<th>Prema nekim autorima, uslijed globalnog zagrijavanja postoji mogućnost porasta intenziteta olujnih nepogoda, kako po brzini vjetra tako i po količini oborina i električnih pražnjenja.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rizik</td>
<td>Oštećenje konstrukcije ili elektroopreme elektrane</td>
</tr>
<tr>
<td>Vezani utjecaj</td>
<td>PP, U/I</td>
</tr>
<tr>
<td></td>
<td>PP, U/I</td>
</tr>
<tr>
<td>Rizik od pojave</td>
<td>4</td>
</tr>
<tr>
<td>Posljedice</td>
<td>2</td>
</tr>
<tr>
<td>Faktor rizika</td>
<td>8 od 25</td>
</tr>
<tr>
<td>Mjere smanjenja rizika</td>
<td>Konstantno usavršavanje učinkovitosti mehanizma priravnosti i pravodobne obrane.</td>
</tr>
<tr>
<td>Primijenjene mjere</td>
<td>Sprovedene odgovarajuće procjene rizika, pravodobna obrana i pripremljen učinkoviti mehanizam priravnosti.</td>
</tr>
<tr>
<td>Potrebne mjere</td>
<td>Nisu predviđene</td>
</tr>
</tbody>
</table>

5.11.4. Zaključak o utjecaju klimatskih promjena

Procjena utjecaja klimatskih promjena na zahvat ocjenjivanja je prema klimatskim modulima u procesu jačanja otpornosti na klimatske promjene iz Smjernica za voditelje projekata: Kako povećati otpornost ranjivih ulaganja na klimatske promjene.

Analizirana su četiri modula od sedam mogućih. Utvrđivanje osjetljivosti zahvata na klimatske promjene, procjena izloženosti opasnostima koje su vezane uz klimatske uvjete, procjena ranjivosti zahvata i procjena rizika.

Navedeni parametri za koje je procijenjena umjerena osjetljivost na klimatske promjene (promjena prosječnih oborina, povećanje ekstremnih oborina, sunčev zračenje, požari i klimatske nepogode) obrađeni su u drugom modulu kroz procjenu izloženosti opasnostima koje su vezane uz klimatske uvjete. Ako se smatra da postoji visoka ili srednja osjetljivost zahvata na određenu klimatsku varijablu ili opasnost, lokacija i podaci o izloženosti zahvata računaju se u procjeni ranjivosti zahvata na klimatske promjene. Na
temelju procjene ranjivosti zahvata izrađuje se procjena rizika predmetnog zahvata na klimatske promjene. Procjena rizika napravljena je za one aspekte kojima je analizom ranjivosti utvrđena visoka ranjivost.

Prema posljednjem šestom izvješću o klimatskim promjenama (IPCC, Climate Change 2021), uslijed globalnog zagrijavanja postoji velika vjerojatnost porasta intenziteta oluđnih nepogoda, kako po brzini vjetra tako i po količini oborina i električnih pražnjenja. Odgovarajućom procjenom rizika i projektiranjem te pripremama za eventualne iznenadne događaje utjecaj klimatskih promjena na zahvata se može svesti na prihvatljivu razinu.

5.12. Utjecaj od povećanih razina buke

Tijekom građenja

Tijekom izgradnje doći će do privremenog povećanja razina buke uslijed povećanja prometa i rada mehanizacije, odnosno aktivnosti vezanih uz uklanjanje vegetacije, dopremu materijala i opreme za izgradnju vjetroelektrane i pristupnih puteva. Nakon izgradnje temelja i pristupnih cesta te buke su značajno manje, jer se daljnja montaža lopatica odvija kranovima. Navedeni utjecaj je privremenog, kratkotrajnog i lokalnog karaktera te će prestati završetkom radova. U skladu s time, ne očekuje se značajnij utjecaj povećanih razina buke te se može zaključiti da je zahvat prihvatljiv uz poštivanje važećih propisa, a naročito Pravilnika o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave (NN 145/04) te članka 29. Zakona o zaštiti okoliša (NN 80/13, 153/13, 78/15, 12/18 i 118/18).

Tijekom korištenja

Prema prostornom planu Zadarske županije (Službeni glasnik br. 2/01, 6/04, 2/05, 17/06, 3/10, 15/14, 14/15), Članak 105., dozvoljena buka određuje se prostornom planovima gradova i općina.

Prostornim planom Zadarske županije (članak 62. stavak 3) definirano je da vjetroagregati moraju biti udaljeni od granice građevinskog područja naselja najmanje 1000 m, a iznimno može biti i manja, ali ne manja od 500 m ako se u postupku procjene utjecaja zahvata na okoliš utvrdi da zahvat nema značajnijeg negativnog utjecaj na naselje.

U zadnjim izmjenama i dopunama ukinuto je ograničenje buke uzrokovane radom vjetroagregata do 40 dB(A) za naselja i druge objekte.

Prema Prostornom planu uređenja Općine Gračac (članak 170.) potrebno je poštivati sve zakonske okvire postojećeg zakonodavstva, pa tako i Zakon o zaštiti od buke i Pravilnik o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave (NN 145/04) kojim se propisuju dopuštene razine buke ovisno o namjeni prostora (Tablica 5.12-1). Tablica 5.12-1 Najviše dopuštene ocjenske ekvivalentne razine vanjske buke određene Pravilnikom o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave (NN 145/04)

<table>
<thead>
<tr>
<th>Zona buke</th>
<th>Namjena prostora</th>
<th>Najviše dopuštene ocjenske razine buke imisije L_{Aeq} u dB (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zona namijenjena odmor, oporavku i liječenju</td>
<td>L_{day} 50, L_{night} 40</td>
</tr>
<tr>
<td>2</td>
<td>Zona namijenjena samo stanovanju i boravku</td>
<td>55, 40</td>
</tr>
<tr>
<td>3</td>
<td>Zona mješovite, pretežito stambene namjene</td>
<td>55, 45</td>
</tr>
</tbody>
</table>
Zona buke | Namjena prostora | Najviše dopuštene ocjenske razine buke imisije L_{RAeq} u dB (A) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zona mješovite, pretežito poslovne namjene sa stanovanjem</td>
<td>L_{day}</td>
<td>65</td>
</tr>
</tbody>
</table>
| 5 | Zona gospodarske namjene (proizvodnja, industrija, skladišta, servisi) | – Na granici građevne čestice unutar zone buke ne smije prelaziti 80 dB(A)
– Na granici ove zone buke ne smije prelazi dopuštene razine zone s kojom graniči | |

Za Općinu Gračac nisu izravno definirane zone prema kojima bi se moglo odrediti jesu li građevinska područja naselja u zoni 2 (Zona namijenjena samo stanovanju i boravku) ili u zoni 3 (Zona mješovite, pretežito stambene namjene) za koje gornja granica buke noću iznosi 40 dB(A) odnosno 45 dB(A).

Tijekom rada doći će do povećanja razine buke na navedenom području. Projektiranjem i izborom najsuvremenijih tehnologija osiguravaju se preventivne mjere zaštiête kao što je smanjenje emisija buke, a rasporedom mikrolokcijacija stupova vjetroelektrane na dostatnoj udaljenosti od naselja i prometnjaka koje se nalaze u smjeru širenja buke isti se mogu svesti na prihvatljivu razinu.

5.13. Utjecaj na stanovništvo

Lokalna zajednica ima pozitivni učinak od energetskih objekata koji proizvode električnu energiju prvenstveno kroz proračunske prihode od naknade koju jedinicama lokalne samouprave plaćaju navedeni objekti.

Negativni utjecaji na stanovništvo se očituju kroz pojavu nove prostorne aktivnosti koja utječe na postojeće životno okruženje, prvenstveno kroz utjecaje buke i zasjenjenja i treperenja sjene. Utjecaj povećanih razina buke opisan je u prethodnom poglavlju.

Vjetroagregati su visoki objekti, relativno malog volumena, ali ipak mogu zaklanjati svjetlost, odnosno stvarati sjenu u okolici. Kad su u pogonu može doći do neugodnog treperenja sjene koje je uočljivo na udaljenostima do 10 promjera rotora. Sjena je najduža je za vrijeme izlaska ili zalaska sunca i u načelu se smanjuje s povećanjem visine nosiva stupa. Treperenje može biti čovjeku vrlo neugodno, a uočljivo je na udaljenosti od 500 m do 700 m od vjetroagregata.

S obzirom na to da su najbliži naseljeni zaseoci na udaljenosti od 1200 m i više od lokacija vjetroagregata, da se vjetroagregati nalaze na izdignutim pozicijama te uzimajući u obzir konfiguraciju terena i biljnog pokrova ne očekuje se utjecaj zasjenjenja i treperenja na lokalno stanovništvo.

Zahvat nema značajnih negativnih utjecaja na kretanje i djelatnosti lokalnog stanovništva. Ne očekuju se negativni utjecaji na zdravlje ljudi.

5.14. Utjecaj na infrastrukturu

Tijekom izgradnje

Moguće je da tijekom izgradnje dođe do kratkotrajnih zastoja prometa na širem području oko zahvata. Do utjecaja na normalno odvijanje prometa može doći na pristupnim lokalnim cestama uslijed ulazaka i izlazaka kamiona i strojeva sa državne ceste na gradilište i obrnuto. Svi navedeni utjecaji su privremeni te
će se svesti na minimum pravilnom organizacijom gradilišta i projektom privremene regulacije prometa, posebno za potrebe dovoza lopatica vjetroagregata koje zbog veličine zahtjevaju poseban prijevoz.

Tijekom korištenja

Tijekom korištenja zahvata neće imati nikakvog utjecaja na prometnice u njegovoj okolini. Utjecaj na energetsku infrastrukturu bit će u obliku nadopune postojećeg energetskog sustava kao izvora obnovljive energije, pa se utjecaj na energetski sustav smatra pozitivnim.

5.15. Utjecaj od nastanka otpada

Tijekom pripremnih i građevinskih radova te transporta i rada mehanizacije, moguće je nastanak različitih vrsta neopasnog i opasnog otpada kojim treba gospodariti u skladu sa Zakonom o gospodarenju otpadom (NN 84/21). Osim pravilnog razvrstavanja i skladištenja otpada na mjestu nastanka, proizvođač otpada je dužan njega predati na oporabu/zbrinjavanje pravnoj osobi koja posjeduje odgovarajuću dozvolu za gospodarenje otpadom ili potvrdu nadležnog tijela o upisu u očevidnik trgovaca otpadom, prijevoznika otpada ili posrednika otpada.

Najveće količine otpada uglavnom spadaju u kategoriju građevinskog otpada, a nastat će kao posljedica pripremnih i građevinskih radova (kopanje temelja nosive konstrukcije, rovova za polaganje podzemnih kablova, i dr.). Ukoliko iskopani materijal predstavlja mineralnu sirovinu sukladno Zakonu o rudarstvu (NN 56/13, 14/14, 52/18, 115/18, 98/19) s istim treba postupati u skladu s Pravilnikom o postupanju s viškom iskopom koji predstavlja mineralnu sirovinu kod izvođenja građevinskih radova (NN 79/14).

Vjerojatnost negativnog utjecaja nastanka otpada moguće je ublažiti razvrstavanjem pojedinih vrsta otpada (npr. glomazni, ambalažni) i njihovim pravilnim skladištenjem na mjestu nastanka te predajom nastalog otpada ovlaštenoj osobi uz propisanu prateću dokumentaciju. Proljevanje ili istjecanje raznih ulja i tekućina u okoliš će se hitno rješavati.

Utjecaji tijekom korištenja

Tijekom korištenja zahvata, najveća količina otpada nastat će uslijed redovnog održavanja vjetroelektrane pri čemu mogu nastati različite vrste neopasnog i opasnog otpada koje se prema Pravilniku o katalogu otpada (NN 90/15) mogu svrstati u grupe 13 i 20. Sav nastali otpad predavat će se ovlaštenim pravnim osobama uz propisanu prateću dokumentaciju.

Utjecaj na okoliš tijekom korištenja će biti lokalni i može se ocijeniti kao zanemariv.

5.16. Kumulativni utjecaji

Osim samostalnih utjecaja planiranog zahvata na sastavnice okoliša, postoji mogućnost kumulativnih utjecaja koji se mogu javiti zbog sličnih, već postojećih i planiranih, zahvata na širem području promatranog zahvata (Error! Reference source not found.). Prilikom procjene kumulativnih utjecaja u obzir su uzeti postojeći i planirani zahvati sličnog utjecaja, čiji je pregled prikazan u tablici ispod.

Tablica 5.16-1 Prikaz postojećih i planiranih zahvata na širem području zahvata (15 km) prema PP Zadarske županije

<table>
<thead>
<tr>
<th>Vrsta zahvata</th>
<th>Naziv</th>
<th>Udaljenost od zahvata</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>vjetroelektrana</td>
<td>Kuk</td>
<td>1,2 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Sedlo</td>
<td>0,9 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>Vrsta zahvata</td>
<td>Naziv</td>
<td>Udaljenost od zahvata</td>
<td>Status</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Mazin</td>
<td>11 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Otrić</td>
<td>Uz jugoistočnu granicu</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Bruvno</td>
<td>8,3 km SZ</td>
<td>Planirano</td>
</tr>
<tr>
<td>vjetroelektrana</td>
<td>Zadar 6P (Velika Popina)</td>
<td>Uz južnu granicu zahvata</td>
<td>Postojeće (Planirano proširenje)</td>
</tr>
<tr>
<td>dalekovod</td>
<td>DV 220 kV TS Brinje-TS Konjsko</td>
<td>350 m J</td>
<td>Postojeće</td>
</tr>
<tr>
<td>dalekovod</td>
<td>TS Gračac-TS Lički Osik (D 110 kV)</td>
<td>6 km Z</td>
<td>Postojeće</td>
</tr>
<tr>
<td>dalekovod</td>
<td>TS Gračac-TS Velika Popina (D 110 kV)</td>
<td>350 m J</td>
<td>Postojeće</td>
</tr>
<tr>
<td>dalekovod</td>
<td>TS Gračac-TS Srb (D 35 kV)</td>
<td>Unutar obuhvat (istočni dio zahvata)</td>
<td>Postojeće</td>
</tr>
</tbody>
</table>

Masnim slovima su označeni zahvati koji su postojeći ili imaju Rješenje Ministarstva gospodarstva i održivog razvoja

S obzirom na identificirane samostalne utjecaje izgradnje vjetroelektrane na pojedine sastavnice okoliša te navedene postojeće i planirane zahvate na širem području, identificirani su mogući kumulativni utjecaji na sljedeće sastavnice okoliša: bioraznolikost, ekološku mrežu i krajobraz, čiji je utjecaj dan u nastavku. Za ostale sastavnice okoliša nije prepoznat mogući kumulativan utjecaj.

Kumulativni utjecaji zahvata u pogledu trajne promjene i gubitka staništa sagledani su detaljno u Poglavlju 4.5.2. Kumulativni utjecaji zahvata na ekološku mrežu zahvata.

Planirani zahvat se nalazi unutar područja ekološke mreže POVS HR2001373 Lisac te na udaljenosti od oko 0,6 km od područja ekološke mreže POVS Parak priode Velebit i POP Velebit.

Unutar šireg područja zahvata (15 km), prema dostupnim podacima sa stranice Ministarstva gospodarstva i održivog razvoja (MINGOR), trenutno se nalazi vjetroelektrana VE Zadar 6P (Velika Popina) (11 km JI) na kojoj je još planirano i proširenje te je u planu izgradnja još četiri VE (Tablica 5.16-1).

Uzvsi u obzir da izgradnjom planiranog zahvata trajno zauzeće staništa dolazi samo na malim područjima oko samih vjetroagregata i pristupnih puteva, neće doći do značajnog gubitka pogodnih staništa.

Zahvat se planira na području ekološke mreže (HR2001373 Lisac) koje je prioritetno stanište za očuvanje vrsta planinski žutokrug i žuti mukač. Utjecaj vjetroelektrane na navedene vrste je karakteriziran kao umjeren, a primjenom mjera ublažavanja predloženih u radu „Mitigating biodiversity impacts associated with solar and wind energy development“ (IUCN 2021.), negativni utjecaj navedenog zahvata će se umanjiti.

Izgradnjom planiranih i prisutnošću postojećih zahvata, moguć je utjecaj efekta barijere, jer se stvaraju značajne promjene u zračnom prostoru pticama i šišmišima. Stradavanje ciljnih vrsta ptica i šišmiša u vidu kolizije s vjetroagregatima i njihovim ulijetanjem u rotore vjetroagregata najviše će se očitovati kod ciljnih vrsta šišmiša područja ekološke mreže HR5000022 Park priode Velebit, HR2001058 Lička Plješivica te HR2000632 Kravsko polje. Utjecaj kolizije ciljnih vrsta s lopaticama vjetroagregata je moguć te se ne može isključiti.

Također je izgradnjom vjetroelektrana moguć utjecaj efekta barijere i na velike zvijeri (IUCN 2021.). U slučaju da se izgrade sve planirane elektrane, izgradnjom predmetnog zahvata doći će do negativnog kumulativnog utjecaja zbog promjene slike krajobraza u industrijsko područje za proizvodnju energije.
Slika 5.16-1 Pregled postojećih i planiranih lokacija za obnovljive izvore energije i ostalu elektroenergetsku infrastrukturu na širem području zahvata (radijus 15 km od granice zahvata)
pri čemu faza predstavlja vjetroagregat s temeljom, plato, elektro i DTK kabel do trafostanice (u dogovoru s HOPS-om) te pristupni put do vjetroagregata koji predstavlja funkcionalnu cjelinu na način da se istim može nesmetano pristupiti do agregata kompletnom prometnicom unutar pripadajuće faze.

5.17. Vjerojatnost značajnih prekograničnih utjecaja

S obzirom na smještaj zahvata na udaljenosti od oko 6-7 km od granice s Bosnom i Hercegovinom, uz primjenu mjera zaštite mogu se isključiti prekogranični utjecaji.
6. PRIJEDLOG RAZMATRANIH MJERA ZAŠTITE OKOLIŠA I PROGRAMA PRAĆENJA OKOLIŠA

U ovoj fazi (Zahtjev za izdavanjem Upute o sadržaju studije o utjecaju na okoliš planirane vjetroelektrane), ne predlažu se mjere zaštite okoliša i ublažavanja mogućih negativnih utjecaja na područja ekološke mreže jer nema postojećih podataka primarno o sastavu strogo zaštićenih i ugroženih vrsta ptica i šišmiša koje koriste područje planiranog zahvata. Ovim Zahtjevom je prepoznata mogućnost negativnog utjecaja planiranog zahvata prvenstveno na ptice i šišmiše, ali nije moguće ocijeniti njegovu značajnost. Značajnosti utjecaja moći će se utvrditi kroz daljne korake unutar postupka PUO i OPZEM, kroz koje se izradom stručnih podloga utvrđuje nulto stanje bioraznolikosti na terenu i procijenjuje značajnost utjecaja zahvata, razrađuju mjere ublažavanja i utvrđuje program praćenja stanja bioraznolikosti područja.
7. IZVORI PODATAKA

7.1. Zakoni i propisi

1. Zakon o zaštiti okoliša (NN 80/13, 153/13, 78/15, 12/18, 118/18)
2. Zakon o zaštiti prirode (NN 80/13, 15/18, 14/19, 127/19)
3. Zakon o gradnji (NN 153/13, 20/17, 39/19, 125/19)
4. Uredba o procjeni utjecaja zahvata na okoliš (NN 61/14, 03/17)

Prostorni planovi

1. Prostorni plan Zadarske županije („Službeni glasnik Zadarske županije“ br. 2/01, 6/04, 2/05, 17/06, 3/10, 15/14, 14/15)
2. Prostorni plan uređenja Općine Gračac (Službeni glasnik Zadarske županije br. 13/07, 27/10, II. izmjene i dopune u tijeku (Odluka o izradi prostornog plana Službeni glasnik. Općine Gračac 2/15).

Tlo i poljoprivredno zemljište

6. Zakon o poljoprivrednom zemljištu (NN 20/18, 115/18, 98/19)
7. Pravilnik o mjerilima za utvrđivanje osobito vrijednog obradivog (P1) i vrijednog obradivog (P2) poljoprivrednog zemljišta (NN 23/19)
8. Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja (NN 71/19)

Vode

1. Zakon o vodama (NN 66/19, 84/21)
2. Strategija upravljanja vodama (NN 91/08)
4. Uredba o standardu kakvoće voda (NN 96/19)
5. Okvirna direktiva o vodama (ODV, 2000/600/EC)
6. Direktiva o podzemnim vodama (DPV 2006/118/EC)
7. Pravilnik o granicama područja podslivova, malih slivova i sektora (NN 97/10 i 31/13)
8. Pravilnik o uvjetima za utvrđivanje zona sanitarne zaštite izvorišta (NN 66/11 i 47/13)
9. Državni plan mjera za slučaj izvanrednih i iznenadnih onečišćenja voda (NN 5/11)

Biologičnost

1. Zakon o zaštiti prirode (NN 80/13, 15/18, 14/19, 127/19)
2. Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže (NN 80/19)
3. Pravilnik o popisu stanišnih tipova i karti staništa (NN 27/21),
4. Pravilnik o strogo zaštićenim vrstama (NN 144/13, 73/16)
5. Pravilnik o ciljevima očuvanja i mjerama očuvanja ciljnih vrsta ptica u područjima ekološke mreže (NN 25/20, 38/20)

Šumarstvo
1. Zakon o šumama (NN 68/18, 115/18, 98/19, 32/20)
2. Pravilnik o uređivanju šuma (NN 97/18, 101/18, 31/20)
3. Pravilnik o doznaci stabala, obilježavanju drvnih sortimenata, popratnici i šumskom redu (NN 71/19)
4. Pravilnik o zaštići šuma od požara (NN 33/14)
5. Pravilnik o utvrđivanju naknade za šumu i šumsko zemljište (NN 12/20)
6. Uredba o osnivanju prava građenja i prava služnosti na šumi i šumskom zemljištu u vlasništvu Republike Hrvatske (NN 87/19)

Divljač i lovstvo
1. Zakon o lovstvu (NN 99/18, 32/19, 32/20)
2. Pravilnik o sadržaju, načinu izrade i postupku donošenja, odnosno odobravanja lovnogospodarske osnove, programa uzgoja divljači i programa zaštite divljači (NN 40/06, 92/08, 39/11, 41/13)

Kulturno-povijesna baština
1. Zakon o zaštiti i očuvanju kulturnih dobara (NN 69/99, 151/03, 157/03, 87/09, 88/10, 61/11, 25/12, 136/12, 157/13, 152/14, 44/17, 90/18, 32/20, 62/20)

Zrak
1. Zakon o zaštiti zraka (NN 127/19)
2. Uredba o određivanju zona i aglomeracija prema razinama onečišćenosti zraka na teritoriju Republike Hrvatske (NN 01/14)

Klimatske promjene
1. Zakon o klimatskim promjenama i zaštiti ozonskog sloja (NN 127/19)
2. Strategija prilagodbe klimatskim promjenama u Republici Hrvatskoj za razdoblje do 2040. godine s pogledom na 2070. godinu (NN 46/20)

Buka
1. Zakon o zaštiti od buke (NN 30/09, 55/13, 153/13, 41/16, 114/18, 14/21)
2. Pravilnik o najvišim dopuštenim razinama buke u sredini u kojoj ljudi rade i borave (NN 145/04)

Infrastruktura
1. Zakon o cestama (NN 84/11, 22/13, 54/13, 148/13, 92/14, 110/19)
2. Odluka o razvrstavanju javnih cesta (NN 18/21)
3. Zakon o gradnji (NN 153/13, 20/17, 39/19 i 125/19)
4. Zakon o energiji (NN 120/12, 14/14, 102/15)
Otpad

1. Zakon o gospodarenju otpadom (NN 84/21)
2. Pravilnik o katalogu otpada (NN 90/15)
3. Pravilniku o gospodarenju otpadom (NN 117/17, 22/19, 81/20)

7.2. Znanstvena i stručna literatura

Geologija

3. Grimani, I. et al. (1972): Osnovna geološka karta SFRJ, M 1:100.000, list Knin (L33-141) – Savezni geol. zavod, Beograd
4. Ivanović, A. et al. (1973): Osnovna geološka karta SFRJ, M 1:100.000, list Obrovac (L33-140) – Savezni geol. zavod, Beograd
5. Šušnjar, M. et al. (1978): Osnovna geološka karta SFRJ, M 1:100.000, list Drvar (L33-129) – Savezni geol. zavod, Beograd
6. Šušnjar M. et al. (1973): Osnovna geološka karta SFRJ, M 1:100.000, list Udbina (L33-128) – Savezni geol. zavod, Beograd

Tlo i poljoprivredno zemljište

Bioraznolikost

18. MZOPUG i APO d.o.o. (2010): Smjernice za izradu studija utjecaja na okoliš za zahvate vjetroelektrana, Zagreb

Krajobraz

26. Krajolik, Sadržajna i metodska podloga Krajobrazne osnove Hrvatske; Ministarstvo prostornog uređenja, graditeljstva i stanovanja (Zavod za prostorno planiranje) i Agronomski fakultet Sveučilišta u Zagrebu (Zavod za ukrasno bilje i krajobraznu arhitekturu); Zagreb, 1999.

Šumarstvo

2. Šumskogospodarska osnova područja Republike Hrvatske 2016-2025

Klima i klimatske promjene

1. Dodatak rezultatima klimatskog modeliranja na sustavu HPC VELEbit: Osnovni rezultati i integracija na prostornoj rezoluciji od 12,5 km

2. Neformalni dokument, Smjernice za voditelje projekata: Kako povećati otpornost ranjivih ulaganja na klimatske promjene, EK

Kvaliteta zraka

1. Izvješće o praćenju kvalitete zraka na teritoriju Republike Hrvatske za 2020. godinu, MGIOR, studeni 2021.

7.3. Internetski izvori podataka

Tlo i poljoprivredno zemljište

1. Arkod baza podataka, dostupno na: http://preglednik.arkod.hr/ARKOD-Web/

Bioraznolikost

Krajobraz

1. CORINE - Pokrov zemljišta Republike Hrvatske (2012), Agencija za zaštitu okoliša, Zagreb, Dostupno na: http://corine.azo.hr/home/corine
2. Geoportal Državne geodetske uprave (2014), Državna geodetska uprava, Dostupno na: http://geoportal.dgu.hr

Šumarstvo

1. Hrvatske šume d.o.o. web portal, dostupno na: http://javni-podaci.hrsume.hr/
2. WMS/WFS servisi: http://gis.hrsume.hr/hrsume/ows, http://gis.hrsume.hr/privsume/wms?version=1.3.0, http://gis.hrsume.hr/privsume/wfs (prosinac, 2021)

Divljač i lovstvo

1. Središnja lovna evidencija, dostupno na: https://sle.mps.hr/

Kulturno-povijesna baština

1. Geoportal kulturnih dobara, službene stranice (pristupljeno : prosinac 2021.) dostupno na: https://geoportal.kulturnadobra.hr/geoportal.html#/)

Kvaliteta zraka

1. Registar onečišćavanja okoliša (ROO) (http://roo.azo.hr/index.html; pristupljeno: prosinac 2021.)
8. PRILOZI

8.1. Popis ciljnih vrsta područja ekološke mreže

Tablica 8.1-1 Ciljne vrste područja ekološke mreže HR1000021 Lička krška polja (Izvor: Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže, NN 80/19)

<table>
<thead>
<tr>
<th>Znanstveni naziv vrste</th>
<th>Hrvatski naziv vrste</th>
<th>Status (gnjezdarica/preletnica/zimovalica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcedo atthis</td>
<td>vodomar</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Anthus campestris</td>
<td>primorska trepteljka</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Bubo bubo</td>
<td>ušara</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Circaetus gallicus</td>
<td>zmijar</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>eja strnjarica</td>
<td>zimovalica</td>
</tr>
<tr>
<td>Circus pygargus</td>
<td>eja livadarka</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Crex crex</td>
<td>kosac</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Dendrocolus medius</td>
<td>crvenoglavi djetlić</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Falco vespertinus</td>
<td>crvenonoga vjetruša</td>
<td>preletnica</td>
</tr>
<tr>
<td>Gallinago gallinago</td>
<td>šljuka kokošica</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Lanius collurio</td>
<td>rusi svračak</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Lanius minor</td>
<td>sivi svračak</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Lullula arborea</td>
<td>ševa krunica</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Sylvia nisoria</td>
<td>pjegava grmuša</td>
<td>gnjezdarica</td>
</tr>
</tbody>
</table>

Tablica 8.1-2 Ciljne vrste područja ekološke mreže HR1000022 Velebit (Izvor: Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže, NN 80/19)

<table>
<thead>
<tr>
<th>Znanstveni naziv vrste</th>
<th>Hrvatski naziv vrste</th>
<th>Status (gnjezdarica/preletnica/zimovalica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actitis hypoleucus</td>
<td>mala prutka</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Aegolius funereus</td>
<td>planinski čuk</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Alectoris graeca</td>
<td>jarebica kamenjarka</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Anthus campestris</td>
<td>primorska trepteljka</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Aquila chrysaetos</td>
<td>suri orao</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Bonasa bonasia</td>
<td>lejetarka</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Bubo bubo</td>
<td>ušara</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Caprimulgus europaeus</td>
<td>leganj</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Circaetus gallicus</td>
<td>zmijar</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Circus cyaneus</td>
<td>eja strnjarica</td>
<td>zimovalica</td>
</tr>
<tr>
<td>Crex crex</td>
<td>kosac</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Znanstveni naziv vrste</td>
<td>Hrvatski naziv vrste</td>
<td>Status (gnjezdarica/preletnica/zimovalica)</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dendrocopos leucotos</td>
<td>planinski djetlić</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Dendrocopos medius</td>
<td>crvenoglavi djetlić</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Dryocopus martius</td>
<td>crna žuna</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Emberiza hortulana</td>
<td>vrtna strnadica</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Falco peregrinus</td>
<td>sivi sokol</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Falco vespertinus</td>
<td>crvenonoga vjetruša</td>
<td>preletnica</td>
</tr>
<tr>
<td>Ficedula albicollis</td>
<td>bjelovrata muharica</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Glaukidiunum passerinum</td>
<td>mali ćuk</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Gypus fulvus</td>
<td>bjeloglavi sup</td>
<td>gnjezdarica****</td>
</tr>
<tr>
<td>Lanius collurio</td>
<td>rusi svračak</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Lanius minor</td>
<td>sivi svračak</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Lullula arborea</td>
<td>ševa krunica</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Pernis apivorus</td>
<td>škanjac osaš</td>
<td>preletnica</td>
</tr>
<tr>
<td>Phylloscopus bonelli</td>
<td>gorski zviždak</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Picoides tridactylus</td>
<td>troprsti djetlić</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Picus canus</td>
<td>siva žuna</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Strix uralensis</td>
<td>jastrebača</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Sylvia nisoria</td>
<td>pjegava grmuša</td>
<td>gnjezdarica</td>
</tr>
<tr>
<td>Tetrao urogallus</td>
<td>tetrijeb gluhan</td>
<td>gnjezdarica</td>
</tr>
</tbody>
</table>

gnjezdarica**** – tijekom sezone gniježdenja na području se redovito hrane ptice koje gnijezde na Kvarnerskim otocima

Tablica 8.1-3 Ciljne vrste i stanišni tipovi područja ekološke mreže HR2000632 Krbavsko polje (Izvor: Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže, NN 80/19)

<table>
<thead>
<tr>
<th>Hrvatski naziv ciljne vrste / ciljnog stanišnog tipa</th>
<th>Znanstveni naziv ciljne vrste / Natura 2000 kod stanišnog tipa</th>
</tr>
</thead>
<tbody>
<tr>
<td>močvarna riđa</td>
<td>Euphydryas aurinia</td>
</tr>
<tr>
<td>hrastova strizibuba</td>
<td>Cerambyx cerdo</td>
</tr>
<tr>
<td>krbski pijor</td>
<td>Delminichthys (Phoxinellus) kravensis</td>
</tr>
<tr>
<td>krbska gaovica</td>
<td>Telestes (Phoxinellus) fontinalis</td>
</tr>
<tr>
<td>veliki vodenjak</td>
<td>Triturus carnifex</td>
</tr>
<tr>
<td>žuti mukač</td>
<td>Bombina variegata</td>
</tr>
<tr>
<td>veliki potkovnjak</td>
<td>Rhinolophus ferumequinum</td>
</tr>
<tr>
<td>mali potkovnjak</td>
<td>Rhinolophus hipposideros</td>
</tr>
<tr>
<td>Hrvatski naziv ciljne vrste / ciljnog stanišnog tipa</td>
<td>Znanstveni naziv ciljne vrste / Natura 2000 kod stanišnog tipa</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>dugokrili pršnjak</td>
<td>Miniopterus schreibersii</td>
</tr>
<tr>
<td>oštrojuri šišmiš</td>
<td>Myotis blythii</td>
</tr>
<tr>
<td>velikouhi šišmiš</td>
<td>Myotis bechsteinii</td>
</tr>
<tr>
<td>veliki šišmiš</td>
<td>Myotis myotis</td>
</tr>
<tr>
<td>livadi procjepak</td>
<td>Chouardia litardierei</td>
</tr>
<tr>
<td>Travnjaci beskoljenke (Molinion caeruleae)</td>
<td>6410</td>
</tr>
<tr>
<td>Špilje i jame zatvorenje za javnost</td>
<td>8310</td>
</tr>
<tr>
<td>Hidrofilni rubovi visokih zelenih uz rijeke i šume (Convulvulion sepii, Filipendulion, Senecion fluviatilis)</td>
<td>6430</td>
</tr>
<tr>
<td>Istočno submediteranski suhi travnjaci (Scorzoneteratia villosae)</td>
<td>62A0</td>
</tr>
<tr>
<td>Suhi kontinentalni travnjaci (Festuco-Brometalia) (*važni lokaliteti za kaćune)</td>
<td>6210*</td>
</tr>
<tr>
<td>Nizinske košanice (Alopecurus pratensis, Sanguisorba officinalis)</td>
<td>6510</td>
</tr>
<tr>
<td>Subatlantske i srednjeuropske hrastove i hrastovo-grabove šume Carpinion betuli</td>
<td>9160</td>
</tr>
</tbody>
</table>

Tablica 8.1-4 Ciljne vrste i stanišni tipovi područja ekološke mreže HR2001058 Lička Plješivica (Izvor: Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže, NN 80/19)

<table>
<thead>
<tr>
<th>Hrvatski naziv ciljne vrste / ciljnog stanišnog tipa</th>
<th>Znanstveni naziv ciljne vrste / Natura 2000 kod stanišnog tipa</th>
</tr>
</thead>
<tbody>
<tr>
<td>širokouhi mračnjak</td>
<td>Barbastella barbastellus</td>
</tr>
<tr>
<td>velikouhi šišmiš</td>
<td>Myotis bechsteinii</td>
</tr>
<tr>
<td>vuk</td>
<td>Canis lupus*</td>
</tr>
<tr>
<td>medvjed</td>
<td>Ursus arctos*</td>
</tr>
<tr>
<td>ris</td>
<td>Lynx lynx</td>
</tr>
<tr>
<td></td>
<td>Buxbaumia viridis</td>
</tr>
<tr>
<td>danja medonjica</td>
<td>Euplagia quadripectaria*</td>
</tr>
<tr>
<td>Planinski i pretplaninski vapnenački travnjaci</td>
<td>6170</td>
</tr>
<tr>
<td>Planinske i borealne vrštine</td>
<td>4060</td>
</tr>
<tr>
<td>Klekovina bora krivulja (Pinus mugo) s dlakavim pjenišnikom (Rhododendron hirsutum)</td>
<td>4070*</td>
</tr>
<tr>
<td>Karbonatna točila Thlaspietea rotundifolii</td>
<td>8120</td>
</tr>
</tbody>
</table>

Tablica 8.1-5 Ciljne vrste i stanišni tipovi područja ekološke mreže HR2001373 Lisac (Izvor: Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže, NN 80/19)
<table>
<thead>
<tr>
<th>Hrvatski naziv ciljne vrste / ciljnog stanišnog tipa</th>
<th>Znanstveni naziv ciljne vrste / Natura 2000 kod stanišnog tipa</th>
</tr>
</thead>
<tbody>
<tr>
<td>žuti mukač</td>
<td>Bombina variegata</td>
</tr>
<tr>
<td>planinski žutokrug</td>
<td>Vipera ursinii macrops*</td>
</tr>
<tr>
<td>Istočno submediteranski suhi travnjaci (Scorzonera villosae)</td>
<td>62A0</td>
</tr>
</tbody>
</table>

Tablica 8.1-6 Ciljne vrste i stanišni tipovi područja ekološke mreže HR2000022 Park prirode Velebit (Izvor: Uredba o ekološkoj mreži i nadležnostima javnih ustanova za upravljanje područjima ekološke mreže, NN 80/19)

<table>
<thead>
<tr>
<th>Hrvatski naziv ciljne vrste / ciljnog stanišnog tipa</th>
<th>Znanstveni naziv ciljne vrste / Natura 2000 kod stanišnog tipa</th>
</tr>
</thead>
<tbody>
<tr>
<td>močvarna riđa</td>
<td>Euphydryas aurinia</td>
</tr>
<tr>
<td>velika četveropjega cvilidreta</td>
<td>Morimus funereus</td>
</tr>
<tr>
<td>jelenak</td>
<td>Lucanus cervus</td>
</tr>
<tr>
<td>alpinska strizibuba</td>
<td>Rosalia alpina*</td>
</tr>
<tr>
<td>bjelonogi rak</td>
<td>Austropotamobius pallipes</td>
</tr>
<tr>
<td>kopnena kornjača</td>
<td>Testudo hermanni</td>
</tr>
<tr>
<td>četveropruži kravosas</td>
<td>Elaphe quatuortlineata</td>
</tr>
<tr>
<td>crvenkrica</td>
<td>Zamenis situla</td>
</tr>
<tr>
<td>planinski žutokrug</td>
<td>Vipera ursinii macrops*</td>
</tr>
<tr>
<td>južni potkovnjak</td>
<td>Rhinolophus euryale</td>
</tr>
<tr>
<td>veliki potkovnjak</td>
<td>Rhinolophus ferumequinum</td>
</tr>
<tr>
<td>Blazijev potkovnjak</td>
<td>Rhinolophus blasii</td>
</tr>
<tr>
<td>mali potkovnjak</td>
<td>Rhinolophus hipposideros</td>
</tr>
<tr>
<td>oštrouhi šišmiš</td>
<td>Myotis blythii</td>
</tr>
<tr>
<td>ridi šišmiš</td>
<td>Myotis emarginatus</td>
</tr>
<tr>
<td>širokouhi mračnjak</td>
<td>Barbastella barbastellus</td>
</tr>
<tr>
<td>dugokrili pršnjak</td>
<td>Miniopterus schreibersii</td>
</tr>
<tr>
<td>dugonogi šišmiš</td>
<td>Myotis capaccinii</td>
</tr>
<tr>
<td>velikouhi šišmiš</td>
<td>Myotis bechsteinii</td>
</tr>
<tr>
<td>veliki šišmiš</td>
<td>Myotis myotis</td>
</tr>
<tr>
<td>vuk</td>
<td>Canis lupus*</td>
</tr>
<tr>
<td>medvjed</td>
<td>Ursus arctos*</td>
</tr>
<tr>
<td>ris</td>
<td>Lynx lynx</td>
</tr>
<tr>
<td></td>
<td>Buxbaumia viridis</td>
</tr>
<tr>
<td>kitaibelov pakujac</td>
<td>Aquilegia kitaibelii</td>
</tr>
<tr>
<td>Hrvatski naziv ciljne vrste / ciljnog stanišnog tipa</td>
<td>Znanstveni naziv ciljne vrste / Natura 2000 kod stanišnog tipa</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>cjelolatična žutilovka</td>
<td>Genista holopetala</td>
</tr>
<tr>
<td>gospina papučica</td>
<td>Cyprispedium calceolus</td>
</tr>
<tr>
<td>modra sasa</td>
<td>Pulsatilla vulgaris ssp. grandis</td>
</tr>
<tr>
<td>tankovratni podzemljar</td>
<td>Leptotirius hochenwartii</td>
</tr>
<tr>
<td>dinarski rožac</td>
<td>Cerastium dinaricu</td>
</tr>
<tr>
<td>Skopolijeva gušarka</td>
<td>Arabis scopoliana</td>
</tr>
<tr>
<td>livadni procjepak</td>
<td>Chouardia litardierei</td>
</tr>
<tr>
<td>danja medonjica</td>
<td>Euplagia quadripunctaria</td>
</tr>
<tr>
<td>velebitska degenija</td>
<td>Degenia velebitica</td>
</tr>
<tr>
<td>dinarski voluhar</td>
<td>Dinarmys bogdanovi</td>
</tr>
<tr>
<td>dalmatinski okaš</td>
<td>Proterebia atra dalmata</td>
</tr>
<tr>
<td>Bazofilni cretovi</td>
<td>7230</td>
</tr>
<tr>
<td>Planinske i borealne vrištine</td>
<td>4060</td>
</tr>
<tr>
<td>Mediteranske makije u kojima dominiraju borovice Juniperus spp.</td>
<td>5210</td>
</tr>
<tr>
<td>Otvorene kserotermofilne pionirske zajednice na karbonatnom tlu</td>
<td>6110*</td>
</tr>
<tr>
<td>Planinski i pretplaninski vapnenacni travnjaci</td>
<td>6170</td>
</tr>
<tr>
<td>Travnjaci tvrdače (Nardus) bogati vrstama</td>
<td>6230*</td>
</tr>
<tr>
<td>Istočno submediteranski suhi travnjaci (Scorzereratelia villosae)</td>
<td>62A0</td>
</tr>
<tr>
<td>Ilirske bukove šume (Aremonio-Fagon)</td>
<td>91K0</td>
</tr>
<tr>
<td>Acidofiline šume smreke brdskog i planinskog pojasa (Vaccinio-Piceetia)</td>
<td>9410</td>
</tr>
<tr>
<td>Špilje i jame zatvorene za javnost</td>
<td>8310</td>
</tr>
<tr>
<td>Klekovina bora krivulja (Pinus mugo) s dlakavim pjenišnikom (Rhododendron hirsutum)</td>
<td>4070*</td>
</tr>
<tr>
<td>Karbonatna točila (Thlaspietia rotundifoli)</td>
<td>8120</td>
</tr>
<tr>
<td>Karbonatne stijene s hazmoftskom vegetacijom</td>
<td>8210</td>
</tr>
<tr>
<td>Suhi kontinentalni travnjaci (Festuco-Brometalia) (važni lokaliteti za kaćune)</td>
<td>6210*</td>
</tr>
<tr>
<td>Travnjaci beskoljenke (Molinion caeruleae)</td>
<td>6410</td>
</tr>
<tr>
<td>Europske suhe vrištine</td>
<td>4030</td>
</tr>
<tr>
<td>Istočnomeditersanka točila</td>
<td>8140</td>
</tr>
<tr>
<td>(Sub-) mediteranske šume endemičnog crnog bora</td>
<td>9530*</td>
</tr>
<tr>
<td>Ilirske hrastovo-grobave šume (Erythronio-Carpinion)</td>
<td>91L0</td>
</tr>
</tbody>
</table>
Izgradnja vjetroelektrane Ljut
8.2. Ovlaštenje tvrtke OIKON d.o.o. za obavljanje poslova iz područja zaštite okoliša

REPUBLICA HRVATSKA
MINISTARSTVO GOSPODARSTVA I ODREŽIVOG RAZVOJA

UPRAVA ZA PROCJENU UVJECAJA NA OKOLIŠ I ODREŽIVOG GOSPODARENJA OPASTOM
SEKTOR ZA PROCJENU UVJECAJA NA OKOLIŠ

KLASA: UPI 351-02/13-08/84
URBOJ: 517-03-1-2-20-23
Zagreb, 30. listopada 2020.

Ministarstvo gospodarstva i odreživog razvoja, na temelju odredbe članka 42. Zakona o zaštiti okoliša ("Narodne novine", brojevi 89/13, 153/13, 78/15 i 12/18) i članka 71. Zakona o izmjenama i dopunama Zakona o zaštiti okoliša ("Narodne novine", broj 118/18) u vezi s člankom 130. Zakona o općem upravnom postupku ("Narodne novine", broj 47/09), rješavajući pevdom zahtjeva OIKON d.o.o., Trg Šenskih uskoka 1-2, Zagreb, radi utvrđivanja promjena u pojasu zapoštenika ovlaštenika, donosi:

RJEŠENJE

I. Ovlašteniku OIKON d.o.o., Trg Šenskih uskoka 1-2, Zagreb, OIB: 63588853294, izdaje se suglasnost za obavljanje stručnih poslova zaštite okoliša:

1. Izrada studija o značajnom utjecaju strategije, plana i/ili programa na okoliš (u daljnjem tekstu: strateška studija) uključujući i dokumentaciju potrebnu za ocjenu o potrebi strateške procjene te dokumentaciju za određivanje sadržaja strateške studije.

2. Izrada studija o utjecaju zahvata na okoliš, uključujući i dokumentaciju za provedbu postupka ocjene o potrebi procjene utjecaja zahvata na okoliš te dokumentacije za određivanje sadržaja studije o utjecaju na okoliš.

3. Izrada procjene rizika i osjetljivosti za sazvancice okoliša.

4. Izrada dokumentacije vezano za postupak izdavanja okolišne dozvole uključujući izradu Temeljnih izvješća.

5. Izrada programa zaštite okoliša.

6. Izrada izvješća o stanju okoliša.

7. Izrada izvješća o sigurnosti.

8. Izrada elaborata o zaštiti okoliša koji se odnose na zahtjeve za koje nije propisana obveza procjene utjecaja na okoliš.

9. Izrada sanacijskih elaborata, programa i sanacijskih izvješća.

Stranica 1 od 3

Ovo rješenje upisuje se u očevidnik izdanih suglasnosti za obavljanje stručnih poslova zaštite okoliša koje vodi Ministarstvo gospodarstva i održivog razvoja.

Uz ovo rješenje prileži Popis zaposlenika ovlaštenika i sastavni dio ovoga rješenja.

Obradiloženje

U provedenom postupku Ministarstvo je izvršilo uvid u zahtjev za promjenom podataka, te službenu evaluacije ovog Ministarstva i utvrdio da su navodi iz zahtjeva utemeljeni za djelatnika Zoran Poljanca.
Djelatnice dr.sc. Zrinka Mesić, mag.biol. i Natasa Obrić mag.ing. aedif., mag.ing. geoing. se brine sa popisa ovlaštenika.

Slijedom navedenoga, utvrđeno je kao u točkama od I. do V. izreke ovoga rješenja.

UPUTA O PRAVNOJ LIJEKU:
Ovo rješenje je izvršno u upravnom postupku i protiv njega se ne može izjaviti žalba, ali se može pokrenuti upravni spor. Upravni spor pokreće se tužbom Upravnog suda u Zagrebu, Avenija Dubrovnik 6, u roku 30 dana od dana dostave ovog rješenja. Tužba se predaje navedenom upravnom sudu neposredno u pisanim obliku, ismeno na zapisnik ili se časno poštom, odnosno dostavlja elektronički.

Upravna pristojba na zahtjev i ovo rješenje naplaćena je državnim bilježima sukladno Zakona o upravnim pristojbama („Narodne novine“, broj 115/16) i Uredbi o tarifi upravnih pristojbi („Narodne novine“, broj 8/17, 37/17, 129/17, 18/19, 97/19 i 128/19).

VIŠA STRUČNA SAVJETNICA
Davorka Majjak

DOSTAVITI:
1. OIKON d.o.o., Trg Senjskih ušćaka 1-2, Zagreb, (R!, s povratnicom!)
2. Evidencija, ovelje
<table>
<thead>
<tr>
<th>STRUČNI POSLOVI ZAŠTITE OKOLIŠA PREMA ČLANU 40. STAVBU 4. ZAKONA</th>
<th>VODITELJ STRUČNIH POSLOVA</th>
<th>ZAPOSLENI STRUČNJACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Izrada studija o značajnom utjecaju strategije, plana ili programa na okoliš tu daljnjem tekstu (stručnog studija) uključujući i dokumentaciju posvećenu za osnovu o potrebi strategično previše potrebogen dokumentaciju za ocjenjivanje sadržaja studija.</td>
<td>Nikolina Bakšić Pavlović, dipl.ing. geol.</td>
<td>Medija Pistotnik, dipl.ing.biol.</td>
</tr>
<tr>
<td></td>
<td>Tena Birov, mag.ing. prospr. zrč.</td>
<td>Ivona Žita, mag.ing.agr.</td>
</tr>
<tr>
<td></td>
<td>Željko Kores, dipl.ing.ggrad.</td>
<td>Marta Mikalčić, mag.oeol.</td>
</tr>
<tr>
<td></td>
<td>dr. sc. Vladimir Kušan, dipl.ing.zrč.</td>
<td>Dr.sc Goran Gvčica, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td>Ana Đanić, mag.biol.</td>
<td>Dalibor Harić, dipl.ing.zrč.</td>
</tr>
<tr>
<td></td>
<td>Edwin Luigić, mag.biol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dr. sc. Bošica Sorgić, dipl.ing.zrč.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoran Poljance, mag.oeol.biol.</td>
<td></td>
</tr>
<tr>
<td>2. Izrada studija o utjecaju zahteva na okoliš, uključujući i dokumentaciju za provedbu postupka ocjene o potrebi procjene utjecaja zahteva na okoliš u dokumentaciji za određivanje zaštite studije u utjecaju na okoliš i dokumentacije o usklađenosti glavnog projekta s mjerenom zaštite okoliša i programom praćenja stanja otkloška.</td>
<td>Nela Jantar, mag.oeol.et.prot.nat.</td>
<td>Dr.sc Goran Gvčica, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td>Tena Birov, dipl.ing.agr.-ur.kraj.</td>
<td>Dalibor Harić, dipl.ing.zrč.</td>
</tr>
<tr>
<td></td>
<td>Željko Kores, dipl.ing.ggrad.</td>
<td>Ivona Žita, mag.ing.agr.</td>
</tr>
<tr>
<td></td>
<td>dr. sc. Vladimir Kušan, dipl.ing.zrč.</td>
<td>Marta Mikalčić, mag.oeol.</td>
</tr>
<tr>
<td></td>
<td>Međić Pistotnik, dipl.ing.biol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dr. sc. Bošica Sorgić, dipl.ing.zrč.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edwin Luigić, mag.biol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nikolina Bakšić Pavlović, dipl.ing.geol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ana Đanić, mag.biol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zoran Poljance, mag.oeol.biol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tena Birov, dipl.ing.agr.-ur.kraj.</td>
<td>Dr.sc Goran Gvčica, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td>Željko Kores, dipl.ing.ggrad.</td>
<td>Dalibor Harić, dipl.ing.zrč.</td>
</tr>
<tr>
<td></td>
<td>dr. sc. Vladimir Kušan, dipl.ing.zrč.</td>
<td>Ivona Žita, mag.ing.agr.</td>
</tr>
<tr>
<td></td>
<td>Međić Pistotnik, dipl.ing.biol.</td>
<td>Marta Mikalčić, mag.oeol.</td>
</tr>
<tr>
<td></td>
<td>Edwin Luigić, mag.biol.</td>
<td></td>
</tr>
<tr>
<td>5. Izrada dokumentacije vezano za sustavni izdavanje okolišne dozvole uključujući izradu temeljnog izvješća.</td>
<td>dr. sc. Bošica Sorgić, dipl.ing.zrč.</td>
<td>Željko Kores, dipl.ing.ggrad.</td>
</tr>
<tr>
<td></td>
<td>Zoran Poljance, mag.oeol.biol.</td>
<td>Dr.sc Goran Gvčica, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td>Ana Đanić, mag.biol.</td>
<td>Daktor Harić, dipl.ing.zrč.</td>
</tr>
<tr>
<td></td>
<td>Ivona Žita, mag.ing.agr.</td>
<td>Zoran Poljance, mag.oeol.biol.</td>
</tr>
<tr>
<td></td>
<td>Marta Mikalčić, mag.oeol.</td>
<td></td>
</tr>
</tbody>
</table>
9. Izrada programa zaštite okoliša

Tena Birov, dipl.ing.agr.-ur.kraj.
Željko Koran, dipl.ing.grad.
dr. sc. Vladimir Kušan, dipl.ing.lumi.
Zoran Poljašev, mag.educ.biol.
Božica Šorgić, dipl.ing.kem.
Nikolina Bakšić Pavlović, dipl.ing.geol.
Ana Danić, mag.biol.

Nela Jantić, mag.ucol.et.proc.nat.
Dr.sc. Goran Gužvića, dipl.ing.geol.
Dalibor Hatić, dipl.ing.geom.
Edin Lujić, mag.biol.
Medea Pistonik, dipl.ing.biol.
Ivona Žiča, mag.ing.agr.
Marta Mikulčić, mag.ucol

10. Izrada izvješća o stanju okoliša

Željko Koran, dipl.ing.grad.
dr. sc. Vladimir Kušan, dipl.ing.lumi.
dr. sc. Božica Šorgić, dipl.ing.kem.
Nikolina Bakšić Pavlović, dipl.ing.geol.
Ana Danić, mag.biol.
Zoran Poljašev, mag.educ.biol.

Tena Birov, dipl.ing.agr.-ur.kraj.
Nela Jantić, mag.ucol.et.proc.nat.
Dr.sc. Goran Gužvića, dipl.ing.geom.
Dalibor Hatić, dipl.ing.geom.
Edin Lujić, mag.biol.
Medea Pistonik, dipl.ing.biol.
Ivona Žiča, mag.ing.agr.
Marta Mikulčić, mag.ucol

11. Izrada izvješća o sigurnosti

Željko Koran, dipl.ing.grad.
dr. sc. Božica Šorgić, dipl.ing.kem.
Nikolina Bakšić Pavlović, dipl.ing.geol.
Zoran Poljašev, mag.educ.biol.

Tena Birov, dipl.ing.agr.-ur.kraj.
Edin Lujić, mag.biol.
dr.sc. Goran Gužvića, dipl.ing.geom.
Dalibor Hatić, dipl.ing.geom.
Ana Danić, mag.biol.
Ivona Žiča, mag.ing.agr.
Marta Mikulčić, mag.ucol

12. Izrada elaborata o zaštiti okoliša koji se odnose na zahtjeve za koje nije propisana obveza procjene utjecaja na okoliš niti ocjene potrebi procjene

Nela Jantić, mag.ucol.et.proc.nat.
Željko Koran, dipl.ing.grad.
dr. sc. Vladimir Kušan, dipl.ing.lumi.
Dalibor Hatić, dipl.ing.geom.
dr. sc. Božica Šorgić, dipl.ing.kem.
Farić Lujić, mag.biol.
Tena Birov, dipl.ing.agr.-ur.kraj.
Medea Pistonik, dipl.ing.biol.
Zoran Poljašev, mag.educ.biol.
Nikolina Bakšić Pavlović, dipl.ing.geol.
Ana Danić, mag.biol.

Dr.sc. Goran Gužvića, dipl.ing.geom.
Ivona Žiča, mag.ing.agr.
Marta Mikulčić, mag.ucol

13. Izrada sanacijskih elaborata, programa i sanacijskih izvješća.

Nikolina Bakšić Pavlović, dipl.ing.geol.
Željko Koran, dipl.ing.grad.
dr.sc. Vladimir Kusan, dipl.ing.geom.
dr.sc. Božica Šorgić, dipl.ing.geom.
Zoran Poljašev, mag.educ.biol.

Tena Birov, mag.ing proc. arh.
Edin Lujić, mag.biol.
Medea Pistonik, dipl.ing.biol.
Nela Jantić, mag.ucol.et.proc.nat.
Dr.sc. Goran Gužvića, dipl.ing.geom.
Dalibor Hatić, dipl.ing.geom.
Ana Danić, mag.biol.
Ivona Žiča, mag.ing.agr.
Marta Mikulčić, mag.ucol

Stranica 2 od 4

115
<table>
<thead>
<tr>
<th>Stranica 4 od 4</th>
</tr>
</thead>
</table>
8.3. Ovlaštenje tvrtke OIKON d.o.o. za obavljanje poslova iz područja zaštite prirode

REPUBLICA HRVATSKA
MINISTARSTVO GOSPODARSTVA I ODRŽIVOG RAZVOJA
Uprava za prečkovanje utjecaja na okoliš i održivo gospodarenje otpadom
Sektor za prekojenu utjecaju na okoliš

KLASA: UP/I 351-02/13-08/139
URBRJOJ: 517-03-1-2-20-20
Zagreb, 30. listopada 2020.

Ministarstvo gospodarstva i održivog razvoja, na temelju odredbe članka 43. Zakona o zaštiti okoliša („Narodne novine“, broj 80/13, 153/13, 78/15, i 12/18) i članka 71. Zakona o izmjenama i dopunama Zakona o zaštiti okoliša („Narodne novine“, broj 118/18) s vezi s člankom 130. Zakona o općem upravnom postupku (Narodne novine, broj 47/09), rješavajući povodom zahtjeva ovlaštenika OIKON d.o.o., Trg Senjskih uskoka 1-2, Zagreb, radi izvršavanja promjena u popisu zaposlenika ovlaštenika, donosi:

RJEŠENJE

I. Ovlašteniku OIKON d.o.o., Trg Senjskih uskoka 1-2, Zagreb, OIB: 63588853294, izdaje se suglasnost za obavljanje stručnih poslova zaštite prirode:

1. Izrada poglavlja i studija ocjene prihvatljivosti strategija, plaća ili programa za ekološku mrežu.
2. Izrada poglavlja i studija ocjene prihvatljivosti zahvata za ekološku mrežu.
3. Priprema i izrada dokumentacije za postupak utvrđivanja prevladavajućeg javnog interesa s prijedlogom kompenzacijskih uvjeta.

IV. Ovo rješenje upisuje se u očevidnik izdana suglasnosti za obavljanje stručnih poslova zaštite okoliša koje vodi Ministarstvo gospodarstva i održivog razvoja.

V. Uz ovo rješenje prileži Pois zaposlenika ovlaštenica i sastavni je dio ovoga rješenja.
Obrázloženje

Sličnog navedenoga, utvrđeno je kao u točkama od I. do V. izreke ovoga rješenja.

UPUTA ČI PRAVNOM LIJEKU:
Ovo rješenje je izvršno u upravnom postupku i protiv njega se ne može izjaviti žalba, ali se može pokrenuti apelacijski spor. Upravni spor pokrenite u tužbom Upravnom sudu u Zagrebu, Avenija Dubrovnik 6, u roku 30 dana od dana dostave ovog rješenja. Tužba se predaje navedenom upravnom sudu neposredno u pisomnom obliku, usmerno na zapisnik ili se šalje poštom, odnosno dostavlja elektronski.

Upravna pristojba na zahtjev i ovo rješenje naplaćena je državnim bilježima sukladno Zakonu o aparna pristojbama („Narodne novine“, broj 115/16) i Uredbi o tarifi upravnih pristojbi („Narodne novine“, broj 8/17, 37/17, 129/17, 18/19, 97/19 i 128/19).

U prilogu: Popis zaposlenika ovlaštenika

DOSTAVITI:
1. OIKON d.o.o., Trg Senjskih uskoka 1-2, Zagreb, (RI s povratnicom)
2. Evidencija, ovjed
POPIS

zapretnik ovlaštenika: OIKON d.o.o., Trg senjskih uskoka 1-2, Zagreb slijedom kojih je ovlaštenik ispunio
prosječne uvjete za izdavanje suglasnosti
za obavljanje stražišnjih poslova zaštite okoliša zahvalno izbijanju Ministarstva

<table>
<thead>
<tr>
<th>STRUČNI POSLOVNI ZAŠTITE OKOLIŠA</th>
<th>VRSTELJ STRUČNIH POSLOVA</th>
<th>STRUČNJACI</th>
</tr>
</thead>
<tbody>
<tr>
<td>prema članku 40. 2. članka 2. Zakona</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medoja Pisonič, dipl.ing.biol.</td>
<td>Željko Koren, dipl.ing.grad.</td>
</tr>
<tr>
<td></td>
<td>Tena Brnov, mag.ing.prosp.arch.</td>
<td>drsc. Goran Gužvica, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td>Ana Đurišić, mag.život.</td>
<td>Oslitor i Tučić, dipl.ing.žum.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nikolina Bakšić Pašović, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marta Mikušić, mag.occol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zora Pejić, mag.edu.biol.</td>
</tr>
<tr>
<td>izrada poglavlja i studija ocjene privatljivosti zahvata za ekološku neredu</td>
<td>Zoran Pejić, mag.edu.biol.</td>
<td>dr. sc. Božica Sorgić, dipl.ing.kem.</td>
</tr>
<tr>
<td></td>
<td>dr. sc. Vladimir Kušan, dipl.ing.žum.</td>
<td>Željko Koren, dipl.ing.grad.</td>
</tr>
<tr>
<td></td>
<td>Edin Lujić, mag.život.</td>
<td>drsc. Goran Gužvica, dipl.ing.geol.</td>
</tr>
<tr>
<td></td>
<td>Tena Brnov, mag.ing.prosp.arch.</td>
<td>Oslitor i Tučić, dipl.ing.žum.</td>
</tr>
<tr>
<td></td>
<td>Ana Đurišić, mag.život.</td>
<td>Nikolina Bakšić Pašović, dipl.ing.geol.</td>
</tr>
</tbody>
</table>

4. Priznata i izmijenjena dokumentacija za postupak utvrđivanja prevladavajućeg javnog interesu s prijedlogom kompenzacijskih uvjeta

volitelj navedeni pod točkom 3.

stražnjaci navedeni pod točkom 3.
Izgradnja vjetrolektrane Ljut